Дана треугольная пирамида КАВС. Точка М лежит на ребре АК, точка Е на ребре ВК, точка В правильной четырехугольной призме сторона основания равна 7 см, а высота призмы равна 13см. Вычислите площадь полной поверхности призмы. прям надо очень ;-;
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Объяснение:
отрезок EF, точка С, не лежащая на прямой EF, и точка D,
лежащая на прямой EF. Выясните взаимное расположение прямой
CD и отрезка EF.
[2]
2. Найдите углы, образованные при пересечении двух прямых, если
один из них равен 520.
[2]
3. Точки А, В и С расположены на одной прямой, причем AB=6см,
ВС=14см. Какой может быть длина отрезка АС?
[2]
4
а) Начертите прямой угол ABD;
b) Внутри угла проведите луч ВС;
c) Найдите величину ZABC и CBD , если ZABC на 40°
больше 2CBD.
[3]
5. Один из смежных углов в 4 раза меньше другого .Найдите эти
углы.
[3]
6. На прямой отложены два равных отрезка АС и СВ. На отрезке CB
взята точка D, которая делит его в отношении 2:3, считая от точки С.
Найдите длину отрезков Ac, DB и AB, если CD-14 см.
[3]
7. Ланы два угла лов и DOC с общей вершиной. Угол DOC
расположен внутри угла лов. Стороны одного угла
перпендикулярны к сторонам другого. Найдите эти углы, если
разность между ними равна прямому углу,
(5)
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²