Объяснение: известно, что периметр нашего ромба 16см, значит длина одной стороны будет:16/4=4см.
Найдем сторону подобного ромба. Известны его диагонали. Диагонали в точке пересечения делятся пополам и образуют 4 прямоугольных треугольника с катетами 4 и 8 см. Боковая сторона находится по теореме Пифагора: √4²+8²=√16+64=√80=8,9см.
Отношение сторон подобного ромба к нашему равно: 8,9/4=2,23.
Находим диагонали нашего ромба: d1=4/2,23=1,79 см. d2=8/2,23=3,59см.
Находим площадь нашего ромба: S=1/2*d1*d2=0,5*1,79*3,59=3,21см²
Дано: A(2,3-4), B(3,0,1), C(0,2,3), D(4,-2,0), E(-3,2,1)
Найти: a) расстояние от точки A до:
1)координатный плоскостей.
Это расстояние равно соответственной координате точки.
До плоскости xOy = 4,
xOz =3,
yOz = 2.
2)координатных осей Ox = √(3² + (-4)²) = √(9 + 16) = √25 = 5,
Oy = √(2² + (-4)²) = √(4 + 16) = √20 = √5,
Oz = √(2² + 3²) = √(4 + 9) = √13.
3)начала координат:
OA = √(2² + 3² + (-4)²) = √(4 + 9 + 16) = √29.
б) на оси z найти точку, равноудаленную от точек D и E.
Примем точку на оси Oz М(0; 0; z).
Используем свойство равенства расстояния MD и ME.
(4² + (-2)² + z²) = ((-3)² + 2² + (z-1)²),
16 + 4 + z² = 9 + 4 + z² - 2z + 1,
2z = -6,
z = -6/2 = -3.
ответ: точка М(0; 0; -3).
ответ: 3,21см²
Объяснение: известно, что периметр нашего ромба 16см, значит длина одной стороны будет:16/4=4см.
Найдем сторону подобного ромба. Известны его диагонали. Диагонали в точке пересечения делятся пополам и образуют 4 прямоугольных треугольника с катетами 4 и 8 см. Боковая сторона находится по теореме Пифагора: √4²+8²=√16+64=√80=8,9см.
Отношение сторон подобного ромба к нашему равно: 8,9/4=2,23.
Находим диагонали нашего ромба: d1=4/2,23=1,79 см. d2=8/2,23=3,59см.
Находим площадь нашего ромба: S=1/2*d1*d2=0,5*1,79*3,59=3,21см²