Диагонали ромба в точке пересечения делятся пополам и образуют 4 равных прямоугольных треугольника(половинки диагоналей это катеты, а сторона ромба гипотенуза) , пусть a,b катеты, с гипотенуза Сумма катетов :
Также вспомним теорему Пифагора:
Объединим оба уравнения в систему:
Выразим из второго уравнения а (подстановка)
Подставим в первое уравнение
Это приведенное уравнение, решаем по т.Виета
Подставляем оба найденных корня в подстановку
Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей.
Выделяем полные квадраты: для x: (x²-2•2x1 + 2²) -1•2² = (x-2)²-4 для y: 2(y²+2•5/2y + (5/2)²) -2•(5/2)² = 2(y+5/2)²-(25/2) В итоге получаем: (x-2)²+2(y+5/2)² = 55/2 Разделим все выражение на 55/2 (2/55)*(x-2)²+(4/55)*(y+(5/2))² = 1. Это уравнение эллипса.
Полуоси эллипса: а=√(55/2), в = √55/2.
Данное уравнение определяет эллипс с центром в точке: C(2; -5/2) Найдем координаты фокусов F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Сумма катетов :
Также вспомним теорему Пифагора:
Объединим оба уравнения в систему:
Выразим из второго уравнения а (подстановка)
Подставим в первое уравнение
Это приведенное уравнение, решаем по т.Виета
Подставляем оба найденных корня в подстановку
Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей.
Площадь ромба можно найти по формуле:
для x:
(x²-2•2x1 + 2²) -1•2² = (x-2)²-4
для y:
2(y²+2•5/2y + (5/2)²) -2•(5/2)² = 2(y+5/2)²-(25/2)
В итоге получаем:
(x-2)²+2(y+5/2)² = 55/2
Разделим все выражение на 55/2
(2/55)*(x-2)²+(4/55)*(y+(5/2))² = 1. Это уравнение эллипса.
Полуоси эллипса: а=√(55/2), в = √55/2.
Данное уравнение определяет эллипс с центром в точке:
C(2; -5/2)
Найдем координаты фокусов F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Итак, фокусы эллипса:F1((-1/2)*√55;0),
F2((1/2)*√55;0).
С учетом центра, координаты фокусов равны:
F1((-1/2)*√55+2;(-5/2)),
F2((1/2)*√55+2;(5/2)).
Тогда эксцентриситет будет равен:≈ 0,71.