1) Так как на луче точки В и С можно расположить двумя то нужно рассмотреть оба. В первом случае, если порядок точек А В С, отрезок АВ будет равен 7,8-2,5=5,3 см. Во втором случае при порядке точек А С В отрезок АВ будет равен 7,8+2,5=10,3 см.
2) Углы, образованные пересечением двух прямых, являются смежными и вертикальными. Берем два смежных угла. По условию один угол меньше другого на 22°. Сумма смежных углов 180°. Находим меньший угол - (180°-22°):2=79° Больший угол равен 79°+22°=101°
Если из острого угла ромба провести высоту ромба на продолжение стороны, то она окажется равной высоте пирамиды.
В самом деле, если вершина пирамиды вне основания Д, вершина из которой опускакем высоту А, высота к противоложной стороне АН, то треугольник АНД-прямоугольный с углом АНД=45 градусов.
Ромб состоит из лвух равносторонних треугольников с высотами АН.
Площадь ромба 5*sqrt(3)* 5*sqrt(3/sqrt(3)=25*sqrt(3)
1) Так как на луче точки В и С можно расположить двумя то нужно рассмотреть оба. В первом случае, если порядок точек А В С, отрезок АВ будет равен 7,8-2,5=5,3 см. Во втором случае при порядке точек А С В отрезок АВ будет равен 7,8+2,5=10,3 см.
2) Углы, образованные пересечением двух прямых, являются смежными и вертикальными. Берем два смежных угла. По условию один угол меньше другого на 22°. Сумма смежных углов 180°. Находим меньший угол - (180°-22°):2=79° Больший угол равен 79°+22°=101°
1) 5,3 см и 10,3см
2) 79° и 101°
3) 18° и 162°
125 см куб
Объяснение:
Извините, что без чертежа, но, надеюсь понятно.
Если из острого угла ромба провести высоту ромба на продолжение стороны, то она окажется равной высоте пирамиды.
В самом деле, если вершина пирамиды вне основания Д, вершина из которой опускакем высоту А, высота к противоложной стороне АН, то треугольник АНД-прямоугольный с углом АНД=45 градусов.
Ромб состоит из лвух равносторонних треугольников с высотами АН.
Площадь ромба 5*sqrt(3)* 5*sqrt(3/sqrt(3)=25*sqrt(3)
Объйм пирамиды 25*sqrt(3)*5**sqrt(3)/3=125 см куб