дано: решение:
ав = 18 см
∠вао = 60° см. рис. δвоа - прямоугольный
т.к. ∠вао = 60°, то ∠аво = 30°
найти: h - ? ао - катет прямоугольного треугольника,
s₀ - ? лежащий напротив угла в 30°. => ао = ав: 2 = 9 (см)
тогда:
h = √(ab²-ao²) = √(324-81) = √243 = 9√3 (см)
площадь основания:
s₀ = πr² = π*ao² = 81π ≈ 254,34 (см²)
ответ: 9√3 см; 254,34 см²
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √40 = 6.32455532,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √40 = 6.32455532,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √16 = 4.
Из этого расчёта видно, что треугольник равнобедренный.
Периметр равен 16,64911064.
2) МЕДИАНЫ ТРЕУГОЛЬНИКА Медиана АM1 из вершины A: Координаты M1(3; -1) Длина AM1 = 4.24264068711928 Медиана BM2 из вершины B: Координаты M2(2; 2) Длина BM2 = 6 Медиана CM3 из вершины C: Координаты M3(1; -1) Длина CM3 = 4.24264068711928
Длины средних линий:
А₁В₁ = АВ/2 = 3.16227766,
В₁С₁ = ВС/2 = 3.16227766,
А₁С₁ = АС/2 = 2.
дано: решение:
ав = 18 см
∠вао = 60°
см. рис. δвоа - прямоугольный
т.к. ∠вао = 60°, то ∠аво = 30°
найти: h - ?
ао - катет прямоугольного треугольника,
s₀ - ? лежащий напротив угла в 30°. => ао = ав: 2 = 9 (см)
тогда:
h = √(ab²-ao²) = √(324-81) = √243 = 9√3 (см)
площадь
основания:
s₀ = πr² = π*ao² = 81π ≈ 254,34 (см²)
ответ: 9√3 см; 254,34 см²