Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Раз медиана треугольника короче стороны АВ в 2 раза, значит МС=АМ=МВ. Найдем модуль вектора АМ. Для этого определим его координаты. Они равны разности координат КОНЦА и НАЧАЛА вектора. То есть АМ{9;2}. Модуль вектора равен корню квадратному из суммы квадратов его координат, то есть |AM| = √(81+4) = √85. Мы знаем, что модули векторов АМ и МС равны. Значит модуль вектора МС{(p-3);6+1)} (его координаты определяем также по разности координат КОНЦА и НАЧАЛА) равен √85. То есть (р-3)²+49=85. Решаем это квадратное уравнение и получаем, что р1=3+√36=9 и р2=-3. ответ: C(9;6) и С(-3;6). Смотри рисунок.
ответ: 20 см
Решение: смотри рисунок.
Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Периметр параллелограмма =KM+MA+AN+NK=BM+MA+AN+NC=BA+AC=10+10=20 (см)
Найдем модуль вектора АМ. Для этого определим его координаты. Они равны разности координат КОНЦА и НАЧАЛА вектора. То есть АМ{9;2}. Модуль вектора равен корню квадратному из суммы квадратов его координат, то есть |AM| = √(81+4) = √85. Мы знаем, что модули векторов АМ и МС равны. Значит модуль вектора МС{(p-3);6+1)} (его координаты определяем также по разности координат КОНЦА и НАЧАЛА) равен √85. То есть (р-3)²+49=85. Решаем это квадратное уравнение и получаем, что р1=3+√36=9 и р2=-3.
ответ: C(9;6) и С(-3;6).
Смотри рисунок.