Касательная СЕ к первой окружности - хорда второй, т.к. соединяет две ее точки С и Е.
Соединим центр В второй окружности с С и проведем к СЕ перпендикуляр ВМ.
Перпендикуляр из центра окружности к хорде делит ее пополам. ⇒ СМ=ЕМ=18:2=9. Треугольник СМВ прямоугольный.
По т.Пифагора ВМ=√(СВ²-СМ²)= √(225-81)=12
В первой окружности проведем радиус в точку касания С. ∠ОСЕ =90°(свойство радиуса к точке касания).
Из О проведем к СВ отрезок ОК ⊥ СВ. ∆ СОК - прямоугольный. Сумма острых углов прямоугольного треугольника равны 90°.
∠МВС+∠МСВ=90°. ∠ОСВ+∠МСВ=90°, ⇒ ∠СОК=∠ВСМ. sin∠МСВ=МВ:СВ=12/15=0,8. Синус равного ему ∠СОК=0,8.
Радиус СО=СК/sin∠COK= 9,375 (ед. длины)
a = 2x см
b = 3x см P = a + b + c = 54 => 2x + 3x + 4x = 54
c = 4x см 9x = 54
Р = 54 см x = 6 (см)
Тогда: a = 2x = 12 (см)
Найти: a=?,b=?,c=? b = 3x = 18 (см)
c = 4x = 24 (см)
ответ: 12 см, 18 см, 24 см.
Касательная СЕ к первой окружности - хорда второй, т.к. соединяет две ее точки С и Е.
Соединим центр В второй окружности с С и проведем к СЕ перпендикуляр ВМ.
Перпендикуляр из центра окружности к хорде делит ее пополам. ⇒ СМ=ЕМ=18:2=9. Треугольник СМВ прямоугольный.
По т.Пифагора ВМ=√(СВ²-СМ²)= √(225-81)=12
В первой окружности проведем радиус в точку касания С. ∠ОСЕ =90°(свойство радиуса к точке касания).
Из О проведем к СВ отрезок ОК ⊥ СВ. ∆ СОК - прямоугольный. Сумма острых углов прямоугольного треугольника равны 90°.
∠МВС+∠МСВ=90°. ∠ОСВ+∠МСВ=90°, ⇒ ∠СОК=∠ВСМ. sin∠МСВ=МВ:СВ=12/15=0,8. Синус равного ему ∠СОК=0,8.
Радиус СО=СК/sin∠COK= 9,375 (ед. длины)