Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй.
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.
1) Так как треугольник ВАМ (расстояние между В и М соединяем линией) прямоугольный, воспользуемся теоремой Пифагора для нахождения МВ;
МВ²=МА²+АВ²
МВ²=1²+3²
МВ=√10 см
2) ∆МАД также прямоугольный, так что повторяем предыдущие шаги:
МД²=1²+4²
МД=√17 см
(Напоминаю, что длина и расстояние – одно и то же).
3) Диагонали ромба в точке пересечения делятся на двое, так что АД=АС=4 см.
4) По теореме Пифагора ВД²=ВА²+АД²;
ВД²=3²+4²
ВД=√25=5 см
(Диагонали ромба в точке пересечения создают прямой угол).
5) В 3-ем пункте мы нашли отрезок АС, так что теперь приступаем к теореме Пифагора:
МС²=1²+4²
МС=√17 см.
6) Площадь прямоугольного треугольника равна произведению его катетов деленое на два.
Так что S ∆mac = 4×1÷2 = 2 см²
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.