Для прямоугольного треугольника: S=p*r, где p - полупериметр, а r - радиус вписанной окружности. Найдем р=S/r или р=24/2=12. Значит периметр равен 24. С другой стороны, радиус вписанной окружности прямоугольного треугольника r=(a+b-c)/2, где a,b - катеты, с - гипотенуза. Отсюда (a+b-c)=4. (1) Мы нашли, что (a+b+c)=24. (2). Из системы уравнений (1) и (2) находим, что гипотенуза с=10. Но в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы, то есть R=c/2 или R=10:2=5. ответ: R=5.
Расстояние от точки S до каждой из вершин правильного треугольника АВС равно 5 см,а до плоскости 3 см. Найдите высоту треугольника ----------- Соединим вершины треугольника с точкой Ѕ АЅ=ВЅ=СЅ Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности. По условию расстояние до плоскости треугольника 3 см АО=R Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора). Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒ Высота треугольника АН=4:(2/3)=6 см
S=p*r, где p - полупериметр, а r - радиус вписанной окружности.
Найдем р=S/r или р=24/2=12. Значит периметр равен 24.
С другой стороны, радиус вписанной окружности прямоугольного треугольника r=(a+b-c)/2, где a,b - катеты, с - гипотенуза.
Отсюда (a+b-c)=4. (1)
Мы нашли, что (a+b+c)=24. (2). Из системы уравнений (1) и (2) находим, что гипотенуза с=10.
Но в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы, то есть R=c/2 или R=10:2=5.
ответ: R=5.
-----------
Соединим вершины треугольника с точкой Ѕ
АЅ=ВЅ=СЅ
Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности.
По условию расстояние до плоскости треугольника 3 см
АО=R
Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора).
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒
Высота треугольника АН=4:(2/3)=6 см