δ авс∠с = 90°ак - биссектр.ак = 18 смкм = 9 смнайти: ∠акврешение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120°
δ авс∠с = 90°ак - биссектр.ак = 18 смкм = 9 смнайти: ∠акврешение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120°
Объяснение:
рассмотрим треугольник ahc-прямоуг., равнобедренный ah=ch=x, ac^2=ah^2+ch^2,
2^2=x^2+x^2
4=2x^2
2=x^2
x=корень из 2
рассмотрим треугольник chb, по теореме пифагора
cb^2=ch^2+hb^2
cb^2= 3^2+(корень из 2)^2=9+2=11
cb= корень из 11