1) BM≈10
2)cosα=0
Объяснение:
Дано трикутник ABC
A(0;-3;-1)
B(-4;0;2)
С(8;3;-7)
BM-медіанна
AC(8-0;3-(-3);-7-(-1)) AC(8;6;-6)
М-середина AC
M(8/2;6/2;-6/2) M(4;3;-3)
BM(4-(-4);3-0;-3-2) BM(8;3;-5)
|BM|=√(8²+3²+(-5)²)=√(64+9+25)≈10
M(0;1;-1) B(1;-1;2) C(3;1;0) D(2;1;1)
MD(2-0;1-1;1-(-1)) MD(2;0;2)
BC(3-1;1-(-1);0-2) BC(2;2;-2)
Знайдемо скалярний добуток векторів:
MD·BC=2·2+02+2·(-2)=4+0-4=0
Знайдемо довжини векторів:
|MD|=√(2²+0²+2²)=√(4+0+4)=√8=2√2
|BC|=√(2²+2²+(-2)²)=√(4+4+4)=√12=2√3
Знайдемо кут між векторами:
cosα=
1) BM≈10
2)cosα=0
Объяснение:
1)Дано трикутник ABC
A(0;-3;-1)
B(-4;0;2)
С(8;3;-7)
BM-медіанна
AC(8-0;3-(-3);-7-(-1)) AC(8;6;-6)
М-середина AC
M(8/2;6/2;-6/2) M(4;3;-3)
BM(4-(-4);3-0;-3-2) BM(8;3;-5)
|BM|=√(8²+3²+(-5)²)=√(64+9+25)≈10
2)M(0;1;-1) B(1;-1;2) C(3;1;0) D(2;1;1)
MD(2-0;1-1;1-(-1)) MD(2;0;2)
BC(3-1;1-(-1);0-2) BC(2;2;-2)
Знайдемо скалярний добуток векторів:
MD·BC=2·2+02+2·(-2)=4+0-4=0
Знайдемо довжини векторів:
|MD|=√(2²+0²+2²)=√(4+0+4)=√8=2√2
|BC|=√(2²+2²+(-2)²)=√(4+4+4)=√12=2√3
Знайдемо кут між векторами:
cosα=
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4