Так как в условии не оговорено положение точки М, будем считать ее серединой любой из сторон треугольника АВС. Приведенное решение только для условия с этим предположением.
Сделаем дополнительные построения: соединим вершину перпендикуляра D с вершинами треугольника АВС. Тогда получится правильная пирамида АВСD с боковыми ребрами DA=DB=DC (так как точка О - центр правильного треугольника АВС, то отрезки DA, DB и DC равны, как наклонные к плоскости, проведенные из одной точки, проекции которых равны - радиусы описанной окружности ).
Соединим точку М с противоположной вершиной С. Тогда МС - высота правильного треугольника АВС и по его свойствам МС - высота и медиана.
Следовательно, точка О делит отрезок МС в отношении 2:1, считая от вершины С. Треугольник DOM - пифагоров и МО=3. Тогда ОС=6, а DC=√(DO²+OC²) = √(16+36) = √52 = 2√13.
Найдем сторону треугольника АВС. МС=МО+ОС = 3+6=9. Из прямоугольного треугольника АМС по Пифагору: МС² = АС²- АС²/4 => 81*4=3*АС² => АС=6√3. Тогда периметр треугольника АВС равен 18√3 ед.
Так как в условии не оговорено положение точки М, будем считать ее серединой любой из сторон треугольника АВС. Приведенное решение только для условия с этим предположением.
Сделаем дополнительные построения: соединим вершину перпендикуляра D с вершинами треугольника АВС. Тогда получится правильная пирамида АВСD с боковыми ребрами DA=DB=DC (так как точка О - центр правильного треугольника АВС, то отрезки DA, DB и DC равны, как наклонные к плоскости, проведенные из одной точки, проекции которых равны - радиусы описанной окружности ).
Соединим точку М с противоположной вершиной С. Тогда МС - высота правильного треугольника АВС и по его свойствам МС - высота и медиана.
Следовательно, точка О делит отрезок МС в отношении 2:1, считая от вершины С. Треугольник DOM - пифагоров и МО=3. Тогда ОС=6, а DC=√(DO²+OC²) = √(16+36) = √52 = 2√13.
Найдем сторону треугольника АВС. МС=МО+ОС = 3+6=9. Из прямоугольного треугольника АМС по Пифагору: МС² = АС²- АС²/4 => 81*4=3*АС² => АС=6√3. Тогда периметр треугольника АВС равен 18√3 ед.
ответ: Рabc = 18√3. AD=BD=DC = 2√13 ед.