Дан параллелограмм. Параллелограмм - четырёхугольник, у которого противоположные стороны попарно параллельны. Рассмотрим стороны ВС и АD и секущую АК, которая, в свою очередь, является биссектрисой угла А.
Итак, прямые параллельны, значит накрест лежащие углы ВКА и КАD равны (по св-ву).
AK-биссектриса угла А => уг. ВАК = уг. САD=> BAK = BKA => треугольник АВК равнобедренный (по признаку).
Дан параллелограмм. Параллелограмм - четырёхугольник, у которого противоположные стороны попарно параллельны. Рассмотрим стороны ВС и АD и секущую АК, которая, в свою очередь, является биссектрисой угла А.
Итак, прямые параллельны, значит накрест лежащие углы ВКА и КАD равны (по св-ву).
AK-биссектриса угла А => уг. ВАК = уг. САD=> BAK = BKA => треугольник АВК равнобедренный (по признаку).
ВК=АВ=7см.
АВ=CD (по свойству параллелограмма)
ВС=ВК+КС=11см
ВС=АD=11см (по свойству параллелограмма)
Равсd=7+7+11+11=36см
Расстояние от точки до прямой измеряется длиной перпендикуляра. AC⊥BC, AC - расстояние от точки A до прямой BC.
Катет AC лежит против угла 30 и равен половине гипотенузы AB. AC=AB/2=10.
1) если окружность касается прямой, то радиус равен расстоянию от центра окружности до прямой, R=10.
2) если окружность не имеет общих точек с прямой, то радиус меньше расстояния от центра окружности до прямой, R<10.
3) если окружность имеет две общих точки с прямой, то радиус больше расстояния от центра окружности до прямой, R>10.