1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
(309 - 59) ÷ 50 = 5
500 ÷ (907 – 807) = 5
1000 ÷ (56 + 44) ÷ 2 = 5
(667 - 67) ÷ 100 - 4 = 2
49 ÷ 7 + (406 - 400) = 13
540 ÷ 9 + (540 + 90) = 690
210 ÷ 30 + 5 × (280 — 260) × (667 + 330 : 10) + 231 = 70 238
Объяснение:
(309 - 59) ÷ 50
1 действие:
309 - 59 = 250
2 действие:
250 ÷ 50 = 5
500 ÷ (907 – 807)
1 действие:
907 - 807 = 100
2 действие:
500 ÷ 100 = 5
1000 ÷ (56 + 44) ÷ 2
1 действие:
56 + 44 = 100
2 действие:
1000 ÷ 100 = 10
3 действие:
10 ÷ 2 = 5
(667 - 67) ÷ 100 - 4
1 действие:
667 - 67 = 600
2 действие:
600 ÷ 100 = 6
3 действие:
6 - 4 = 2
49 ÷ 7 + (406 - 400)
1 действие:
406 - 400 = 6
2 действие:
49 ÷ 7 = 7
3 действие:
7 + 6 = 13
540 ÷ 9 + (540 + 90)
1 действие:
540 + 90 = 630
2 действие:
540 ÷ 9 = 60
3 действие:
60 + 630 = 690
210 ÷ 30 + 5 × (280 — 260) × (667 + 330 : 10) + 231
1 действие:
280 - 260 = 20
2 действие:
330 : 10 = 33
3 действие:
667 + 33 = 700
4 действие:
210 ÷ 30 = 7
5 действие:
5 × 20 = 100
6 действие:
100 × 700 = 70 000
7 действие:
7 + 70 000 = 70 007
8 действие:
70 007 + 231 = 70 238
Я в этом примере: 49 ÷ 7 + (406 - 400), 50 изменил на 49, потому что я предположил что ты не правильно списал, так как 50 на 7 не делится
И сделай мой ответ лучшим, так как я старался, при том что ты всего лишь даёшь
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.