Отрезок, соединяющий середины диагоналей трапеции равен половине разности основанийТреугольники, образованные основаниями трапеции и отрезками диагоналей до точки их пересечения - подобныТреугольники, образованные отрезками диагоналей трапеции, стороны которых лежат на боковых сторонах трапеции - равновеликие (имеют одинаковую площадь)Если продлить боковые стороны трапеции в сторону меньшего основания, то они пересекутся в одной точке с прямой, соединяющей середины основанийОтрезок, соединяющий основания трапеции, и проходящий через точку пересечения диагоналей трапеции, делится этой точкой в пропорции, равной соотношению длин оснований трапецииОтрезок, параллельный основаниям трапеции, и проведенный через точку пересечения диагоналей, делится этой точкой пополам, а его длина равна 2ab/(a + b), где a и b - основания трапеции
Около любого треугольника можно описать единственную окружность. Стороны треугольника - хорды этой окружности и делят ее на три части. Если взять точку D на дуге АВ, стягиваемой хордой АВ и провести из этой точки хорды DE или DF, не проходящие через точки А и В соответственно и через точку С (оговорено в условии), то эти хорды пересекут хорду АВ и дугу АС или ВС соответственно, а значит и хорды АС или ВС, стягивающие эти дуги. Так как через две точки можно провести только одну прямую, точку D можно взять в любом месте на прямых, содержащих хорды DE или DF.
Что и требовалось доказать.
P.S. Справедливо ТОЛЬКО для одной плоскости. Если точка D не будет принадлежать плоскости треугольника, то через нее можно провести прямые, пересекающие сторону АВ, но не пересекающие сторон АС или ВС.
Объяснение:
Около любого треугольника можно описать единственную окружность. Стороны треугольника - хорды этой окружности и делят ее на три части. Если взять точку D на дуге АВ, стягиваемой хордой АВ и провести из этой точки хорды DE или DF, не проходящие через точки А и В соответственно и через точку С (оговорено в условии), то эти хорды пересекут хорду АВ и дугу АС или ВС соответственно, а значит и хорды АС или ВС, стягивающие эти дуги. Так как через две точки можно провести только одну прямую, точку D можно взять в любом месте на прямых, содержащих хорды DE или DF.
Что и требовалось доказать.
P.S. Справедливо ТОЛЬКО для одной плоскости. Если точка D не будет принадлежать плоскости треугольника, то через нее можно провести прямые, пересекающие сторону АВ, но не пересекающие сторон АС или ВС.