Дано: abcd — параллелограмм, bc= 6 см, ba= 8 см, ∡ b равен 60°. найти: площадь треугольника s(abc) и площадь параллелограмма s(abcd). sδabc= ? 3√ см2; s(abcd)= ? 3√ см2.
1) Я эту букву по середине не понял так что будет O
ABO = DOC, по двум сторонам и углу между ними, стороны равны по условию, а углы вертикальные;
4) BCD = ABD, по двум сторонам и углу между ними, одна сторона и угол равны по условию, а сторона BD общая;
7) NPK = MNK, по трём сторонам, две равны по условию, третья общая;
10) Треугольник ABC равнобедренный, это следует из условия, обозначим точку пересечения отрезков AD и BE как точку O. Треугольник ABO равнобедренный так как уголки данные из задания равны то и большие углы CBA и CAB равны то есть и углы OBA и OAB равны. Из этого следует что стороны AO и BO равны.
BDO и AOE равны по стороне и двум углам прилежащим к ней, один угол равен по условию, второй вертикальный, а сторону мы доказали.
1. Треугольники равны по сторонам AO и OC, DO и OB + углы DOC и AOB,которые равны по свойству вертикальных углов
4. По свойству параллельных прямых (BC и AD), углы ABD и DBC равны , 2 ранвых угла и две равные стороны
7. По свойству параллельных прямых, углы MKN и KNP равны+ это параллелограмм, по его свойствам
2 общих стороны и один общий ушол
10.
Углы EFA и BFD равны как вертикальные,а AE и BD составляют одинаковое расстояние от равных сторон AC и BC
Поэтому BD=AE
Равны по двум равным углам и одной равной стороне
1) Я эту букву по середине не понял так что будет O
ABO = DOC, по двум сторонам и углу между ними, стороны равны по условию, а углы вертикальные;
4) BCD = ABD, по двум сторонам и углу между ними, одна сторона и угол равны по условию, а сторона BD общая;
7) NPK = MNK, по трём сторонам, две равны по условию, третья общая;
10) Треугольник ABC равнобедренный, это следует из условия, обозначим точку пересечения отрезков AD и BE как точку O. Треугольник ABO равнобедренный так как уголки данные из задания равны то и большие углы CBA и CAB равны то есть и углы OBA и OAB равны. Из этого следует что стороны AO и BO равны.
BDO и AOE равны по стороне и двум углам прилежащим к ней, один угол равен по условию, второй вертикальный, а сторону мы доказали.
Объяснение: