Если развернуть цилиндр получится прямоугольник, значит площадь боковой поверхности цилиндра-площадь прямоугольника, которая находится длина умножить на ширину (a*b)
Длина - образующая, ширина-радиус или половина диаметра.
S(бок) = 4*6=24 cм2
Площадь полной поверхности это сумма площади боковой поверхности и двух площадей окружностей(оснований цилиндра)
S(осн)=ПR^2=16П cм^2
S(полн)=2*S(осн)+S(бок)=32П+24 см^2
Объем цилиндра умноженная площадь основания на высоту(или образующую)
Дано:
ΔАВС
окр. (О; ОС)
дуга ВС : дуга АС : дуга АВ = 3 : 7 : 8
ВС = 20
Найти: ОС.
Пусть k - одна часть, тогда дуга ВС = 3k, дуга АС = 7k, дуга АВ = 8k. Т.к. в окружности 360°, то составим и решим уравнение:
3k + 7k + 8k = 360;
18k = 360;
k = 20.
Найдем дугу ВС: дуга ВС = 3 * 20 = 60°.
∠ВОС - центральный, опирается на дугу ВС, значит ∠ВОС = 60°.
ΔВОС - равнобедренный, т.к. ОВ = ОС (радиусы), по свойству углов в равнобедренном треугольнике ∠ОВС = ∠ОСВ = (180° - ∠ВОС) : 2 = (180° - 60°) : 2 = 60°.
Следовательно, ΔВОС - равносторонний и ОС = ОВ = ВС = 20.
ответ: 20.
Объяснение:
V=S(осн)*H=16П*6=96П см^3
S(полн)=2*S(осн)+S(бок)=32П+24 см^2
Объяснение:
Если развернуть цилиндр получится прямоугольник, значит площадь боковой поверхности цилиндра-площадь прямоугольника, которая находится длина умножить на ширину (a*b)
Длина - образующая, ширина-радиус или половина диаметра.
S(бок) = 4*6=24 cм2
Площадь полной поверхности это сумма площади боковой поверхности и двух площадей окружностей(оснований цилиндра)
S(осн)=ПR^2=16П cм^2
S(полн)=2*S(осн)+S(бок)=32П+24 см^2
Объем цилиндра умноженная площадь основания на высоту(или образующую)
V=S(осн)*H=16П*6=96П см^3