1) Пусть основание треугольника = 5х, тогда боковая сторона равна 4х.
Так как треугольник равнобедренных, то его периметр равен:
5х + 4х + 4х = 26 см,
13 х = 26
откуда х = 26 : 13 = 2,
х = 2 см
2) Следовательно:
- основание треугольника равно:
5х * 2 = 10 см;
- боковая сторона равна:
4х * 2 = 8 см.
3) Прямая проходит параллельно основанию через середину боковой стороны треугольника. Значит верхнее основание трапеции является средней линией треугольника. А так как средняя линия треугольника равна половине той стороны треугольника, которой она параллельна, то эта средняя линия (она же - верхнее основание трапеции) составляет:
10 : 2 = 5 см.
4) Согласно условию, боковая сторона трапеции равна половине боковой стороны треугольника, что составляет:
8 : 2 = 4 см.
Таких сторон в трапеции - две. Это это следует из того, что треугольник равнобедренный, соответственно и трапеция, построенная на его сторонах, также является равнобедренной.
5) Все стороны трапеции рассчитали - находим её периметр:
решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
23 см
Объяснение:
1) Пусть основание треугольника = 5х, тогда боковая сторона равна 4х.
Так как треугольник равнобедренных, то его периметр равен:
5х + 4х + 4х = 26 см,
13 х = 26
откуда х = 26 : 13 = 2,
х = 2 см
2) Следовательно:
- основание треугольника равно:
5х * 2 = 10 см;
- боковая сторона равна:
4х * 2 = 8 см.
3) Прямая проходит параллельно основанию через середину боковой стороны треугольника. Значит верхнее основание трапеции является средней линией треугольника. А так как средняя линия треугольника равна половине той стороны треугольника, которой она параллельна, то эта средняя линия (она же - верхнее основание трапеции) составляет:
10 : 2 = 5 см.
4) Согласно условию, боковая сторона трапеции равна половине боковой стороны треугольника, что составляет:
8 : 2 = 4 см.
Таких сторон в трапеции - две. Это это следует из того, что треугольник равнобедренный, соответственно и трапеция, построенная на его сторонах, также является равнобедренной.
5) Все стороны трапеции рассчитали - находим её периметр:
10 + 5 + 4 + 4 = 23 см
ответ: 23 см
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.