Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Поскольку призма прямая, значит плоскость АА1С1С перпендикулярна ребру ВС двугранного угла А1АВС. Тогда линейный угол <A1CA=45°. В прямоугольном треугольнике АА1С АС=АА1=8 (так как <<A1CA=45°). Площадь основания призмы АВСА1В1С1 (пирамиды А1АВС) равна So=(1/2)*AC*BC или So=(1/2)*8*6=24. Объем пирамиды V=(1/3)*So*h=(1/3)*So*АА1. Или V=(1/3)*24*8=64.
AB = √((2+3)²+(3+2)²+(4-5)²) = √(5²+5²+1²) = √51
AC = √((2-3)²+(3+4)²+(4+4)²) = √(1²+7²+8²) = √114
ВС = √((-3-3)²+(-2+4)²+(5+4)²) = √(6²+2²+9²) = √121 = 11
Полупериметр
p = (√51 + √114 + 11)/2
Площадь по формуле Герона
S² = p*(p-a)*(p-b)*(p-c)
S² = (√51 + √114 + 11)/2 * ((√51 + √114 + 11)/2-√51) * ((√51 + √114 + 11)/2-√114) * ((√51 + √114 + 11)/2-11)
S² = 1/2⁴*(√51 + √114 + 11) * (-√51 + √114 + 11) * (√51 - √114 + 11) * (√51 + √114 - 11)
Первые две скобки
(√51 + √114 + 11) * (-√51 + √114 + 11) = (√114 + 11)² - (√51)² = 114 + 22√114 + 121 - 51 = 184 + 22√114
Вторые две скобки
(√51 - √114 + 11) * (√51 + √114 - 11) =
= 51 + √51*√114 - 11√51
- √114*√51 - 114 + 11√114
+ 11√51 + 11√114 - 121
= - 184 + 22√114
---
S² = (22√114)² - 184² = 484*114 - 33856 = 21320
S = 1/2⁴ * 21320 = 2665/2
S = √(2665/2)
Площадь основания призмы АВСА1В1С1 (пирамиды А1АВС) равна So=(1/2)*AC*BC или So=(1/2)*8*6=24. Объем пирамиды V=(1/3)*So*h=(1/3)*So*АА1. Или
V=(1/3)*24*8=64.