35.25 1) Если окружность вписана в трапецию, то сумма ее оснований равна сумме боковых сторон, а т.к. трапеция равнобедренная, то боковые стороны равны. Значит, боковая сторона равна полусумме оснований.
(9+25)/2=17
2) найдем радиус окружности, вписанной в трапецию. Для этого опустим из вершин тупых углов высоты на большее основание, и рассмотрим треугольник со сторонами - высотой, боковой стороной трапеции, равной 17 и отрезком нижнего основания, отсекаемого высотой, он равен (25-9)/2=16/2=8, значит, высота трапеции равна
√(17²-8²)=√(25*9)=5*3=15, тогда радиус равен 7.5, а длина окружности равна 2*π*7.5=15π, отношение длины окружности к числу π равно
15π/π=15
35.27
Площадь треугольника равна 9²√3/4, с другой стороны, эта же площадь равна 9³/(4R), где R- радиус описанной окружности, отсюда 9³/(4R)=9²√3/4; 4R9²√3=9³*4⇒R=9³/(9²√3)=9/√3=3√3, площадь круга равна πR²=π*9*3=27π, отношение площади к числу π равна
27π/π=27
35.24
сторона ромба равна √((15/2)²+(20/2)²)=0.5√625=25*0.5=12.5
Площадь треугольника, на которые ромб разбивается диагоналями равна 0.5*(15/2)*(20/2)=75/2=37.5, с другой стороны, эта же площадь равна 0.5*12.5*r=6.25r, откуда r=37.5/6.25; r=6, длина окружности равна 2π*6=12π, искомое отношение длины окружности к числу π равно 12π/π=12
5)один угол 4х, второй 5х, здесь х>0, это коэффициент пропорциональности, 4х+5х=180;х=180/9=20, значит, один угол 20°*4=80°, ему противоположный тоже 80°, а два других 180°-80°=100°, или 20°*5=100°
35.25 1) Если окружность вписана в трапецию, то сумма ее оснований равна сумме боковых сторон, а т.к. трапеция равнобедренная, то боковые стороны равны. Значит, боковая сторона равна полусумме оснований.
(9+25)/2=17
2) найдем радиус окружности, вписанной в трапецию. Для этого опустим из вершин тупых углов высоты на большее основание, и рассмотрим треугольник со сторонами - высотой, боковой стороной трапеции, равной 17 и отрезком нижнего основания, отсекаемого высотой, он равен (25-9)/2=16/2=8, значит, высота трапеции равна
√(17²-8²)=√(25*9)=5*3=15, тогда радиус равен 7.5, а длина окружности равна 2*π*7.5=15π, отношение длины окружности к числу π равно
15π/π=15
35.27
Площадь треугольника равна 9²√3/4, с другой стороны, эта же площадь равна 9³/(4R), где R- радиус описанной окружности, отсюда 9³/(4R)=9²√3/4; 4R9²√3=9³*4⇒R=9³/(9²√3)=9/√3=3√3, площадь круга равна πR²=π*9*3=27π, отношение площади к числу π равна
27π/π=27
35.24
сторона ромба равна √((15/2)²+(20/2)²)=0.5√625=25*0.5=12.5
Площадь треугольника, на которые ромб разбивается диагоналями равна 0.5*(15/2)*(20/2)=75/2=37.5, с другой стороны, эта же площадь равна 0.5*12.5*r=6.25r, откуда r=37.5/6.25; r=6, длина окружности равна 2π*6=12π, искомое отношение длины окружности к числу π равно 12π/π=12
свойства углов параллелограмма: противоположные углы равны, а прилежащие к одной стороне в сумме составляют 180°.
Если в задании примеры на нахождение углов, прилежащих к одной стороне, то можем решать с уравнений.
1) один угол равен 52°, три остальных 52°-это ему противолежащий, и два угла по 180°-52°=128°.
2) речь о противоположных углах, в сумме 174°, значит, каждый по 174°/2=87°, тогда два других по 180°-87°=93°
3)один угол х, второй х+28, в сумме 180, значит, х+х+28=180⇒х+14=90;
х=90-14=76, значит, два угла по 76°, а два других по 76°+28°=104°
4) меньший угол х, больший 4х, уравнение х+4х=180; х=180/5=36
Два угла по 36°, два других по 4*36°=144°
5)один угол 4х, второй 5х, здесь х>0, это коэффициент пропорциональности, 4х+5х=180;х=180/9=20, значит, один угол 20°*4=80°, ему противоположный тоже 80°, а два других 180°-80°=100°, или 20°*5=100°