2) Если периметр ромба равен 32 см, то сторона ромба равна 32 : 4 = 8 см. Высота ромба на 1,7 см меньше чем сторона значит H = 8 - 1, 7 = 6,3 см Площадь ромба равна произведению стороны ромба и его высоты, то есть S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне. С одной стороны площадь параллелограмма равна S = 16 * 5,9 Но с другой стороны площадь этого параллелограмма можно вычислить и так S = 4 * h Приравняем правые части этих равенств 4 * h = 16 * 5,9 h = 4 * 5,9 = 23,6 см Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK S = AD * BK = 7 * 3 = 21 см²
Высота ромба на 1,7 см меньше чем сторона значит
H = 8 - 1, 7 = 6,3 см
Площадь ромба равна произведению стороны ромба и его высоты, то есть
S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне.
С одной стороны площадь параллелограмма равна
S = 16 * 5,9
Но с другой стороны площадь этого параллелограмма можно вычислить и так
S = 4 * h
Приравняем правые части этих равенств
4 * h = 16 * 5,9
h = 4 * 5,9 = 23,6 см
Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK
S = AD * BK = 7 * 3 = 21 см²
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3.
tg30°=OM:AM.
по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3
ответ: Vк=20,25π
2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2
Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12