Летние каникулы всегда приносят приятные впечатления. позади остались уроки, школьные звонки и переменки, а впереди – ожидание чего-то хорошего. вдвоем с сестрой мы ухаживаем за нашими овощами. на нашей зеленой грядке растут укроп, петрушка, щавель и редис. мы с удовольствием поливаем и пропалываем свою зеленую грядку. и приятно слышать от мамы за обедом следующие слова: " какой удивительно вкусный салат получился из ваших овощей! какие вы умнички, мои девочки! " летом времени достаточно: можно и с подружками погулять, и в гости съездить, и в разные игры поиграть. но больше всего я поездки на море с родителями. я наконец-то научилась плавать этим летом и рада этому. море мне нравится. оно настолько глубокое и широкое, и такое загадочное, что иногда даже пугает своей непредсказуемостью. море бывает одновременно близким и далеким, теплым и прохладным. а как приятно в летний жаркий день окунуться в свежую прохладную воду! и плавать, нырять, плескаться! я разложил на столе морские раковины. прикладывая их к уху, я различаю шум прибоя. и можно почувствовать силу морской волны, которая летит, и попадая на камень, выбрасывает мне в лицо множество ярких соленых брызг. мне весело, я смеюсь вместе со всеми: с родителями, морем, солнцем и чайками. лето пролетает стремительно, и уже снова приближается сентябрь. но это и неплохо, ведь совсем скоро я смогу увидеться со своими одноклассниками, поделиться со всеми друзьями и подружками своими летними впечатлениями. а еще хочется поскорее начать учиться, и вновь радовать своими успехами маму с папой.
А) BD ищется из треугольника ABD по теореме Пифагора: BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см. Треугольник CDH - прямоугольный с прямым углом CHD. Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам. Значит, треугольник CDH - равнобедренный. CH = DH = 5 см. Ищем CD по теореме Пифагора: CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC. AH = AD - DH = 12 - 5 = 7 см. Ищем AC по теореме Пифагора: AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.