Пусть центр окружности к которой проведена касательная, точка О. ов- радиус, проведённый в точку касания, значит перпендикулярен касательной ВС. Угол СВА равен 90 градусов минус угол ОВА. Треугольник ВОА равнобедренный, значит углы при основании ОВА и ОАВ равны. Центральный угол ВОА равен 180 градусов минус два угла ОВА. Получается, что центральный угол в два раза больше угла между касательной и хордой и равен 92 градуса. Кроме того известно, что центральный угол (меньше развёрнутого) равен градусной мере дуги, на которую он опирается. ответ 92 градуса.
В задании, надо догадываться, требуется найти объём второй пирамиды.
Находим площадь основания АВС по формуле:
So = absin C = 12*18*sin 60° = 216*(√3/2) = 108√3 кв. ед.
Высота ho из точки А на ВС равна:
ho = 2So/BC = 2*108√3/12 = 18√3.
Так как сечение параллельно SA, то оно вертикально, поэтому высота второй пирамиды равна половине ho, то есть hп = 9√3.
Площадь сечения (а это прямоугольник со сторонами как средними линиями четырёх граней первой пирамиды) находим так:
Sп = (8√3/2)*(12/2) = 24√3 кв. ед.
Получаем ответ: Vп = (1/3)Sп*hп = (1/2)*24√3*9√3 = 216 куб. ед.