В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Кирюха33333
Кирюха33333
10.12.2020 12:32 •  Геометрия

Дано: ABK, ACM; BK пересекает MC в точке D; AM=AK;DM=DK
Докозать:
1) BD=CD
2) AB=AC

Показать ответ
Ответ:
olga19852
olga19852
20.09.2020 18:57
Площадь боковой проверхности призмы равна произведению ее высоты на периметр основания.
Для ответа на вопрос задачи нужно знать высоту призмы. Найдем по т. косинусов диагональ основания АС.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, угол АВС=180°-30°=150°
Пусть АВ=4см
ВС=4√3 см
АС²=АВ²+ ВС² -2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС²=16+48+32√3*(√3):2=112
АС=√112=4√7
Высота призмы
СС1=АС: ctg(60°)=(4√7):1/√3
CC1=4√21
Площадь боковой поверхности данной призмы
S=H*P=4√21*2(4+4√3)=32√21*(1+√3) см²
0,0(0 оценок)
Ответ:
Altana020306
Altana020306
11.09.2020 21:59

1. AN = AB^2/AM = 3; MN = 2; => OB = 1;

=> угол BAO = 30 градусов; BH = AB*sin(30) = корень(3)/2;

2. О - центр правильного шестиугольника.

ОС = ОD = CD = OA; => OK = KD; => AK/KD = 3;

3. вот тут есть кое-что интересное. Построение такое - проводим ВР II CD, Р лежит на MN. Проводим PK II BA, K лежит на AD. Ясно, что PN = BC; => MP = (AD - BC)/2 = AK; 

Трапеция KPND равна трапеции MBCN, то есть её площадь составляет 3/5 площади AMNP. Площадь параллелограмма AMPK, соответственно, составляет 2/5 от площади AMNP. Поскольку у этих фигур общая высота, отношение их площадей равно отношению средних линий.

Обдумайте это внимательно - речь идет о средних линиях параллелограмма (а параллелограмм - частный случай трапеции :)) AMPK, равной АК = МР = (AD - BC)/2; и средней линии трапеции KPND, то есть - трапеции MBCN, равной ((AD + BC)/2 + BC)/2 = (AD/4 + 3*BC/4); 

(Я вынужден сделать замечание. Условие MN = 10 я намеренно не использую, хотя отлично вижу, что тут можно было бы подставить это значение.)

Итак, получилось (AD/2 + 3*BC/2)/(AD - BC) = 3/2; обозначим AD/BC = x;

(x/2 + 3/2)/(x - 1) = 3/2; x = 3;

Условие MN = 10 позволяет найти основания, равные 5 и 15.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота