Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²