Вот ответ ко второй задаче : Углы 1 и 2 равны, т к АК биссектриса, углы 1 и 3 равны как накрест лежащие между параллельными прямыми ВС и AD и секущей АM . Значит углы 2 и 3 равны и треугольник АВM равнобедренный. AB = CD = 5 см. BC = BK + KC = 13 см, BC = AD = 13 см. P = 2 * (5+13) = 36 см. ответ : 36 см Вот ответ к четвертой : Если меньшая диагональ 12 см, а один из углов 60 градусов(меньший), то эта диагональ делит ромб на 2 равносторонних треугольника со стороной 12(а треугольники равносторонние,так как изначально они равнобедреные(у ромба все стороны равны)а угол 60 градусов,значит 2 других тоже по 60 градусов,а отсюда следует,что треугольники равносторонние со стороной 12 см)стороны ромба равны значит все стороны 12 см, а периметр равен сумме длин всех сторон:P=12*4=48см
ответ: P=48 см
вот ответ к первой задаче : так как сумма двух соседних углов ромба равна 180⁰. По условию задачи два угла ромба относятся как 8:10 ,значит, если один из углов 8х, то другой 10х сумма двух соседних углов ромба равна 180⁰.составим уравнение 8х + 10х = 180 18х = 180 х =10 коэффициент ТОГДА меньший угол равен: 8х = 8*10⁰ = 80⁰ ТОГДА больший угол 10х=10*10=100° град
Когда грани пирамиды равнонаклонены к основанию, то 1) в основание можно вписать окружность (для треугольника это всегда можно сделать, но тут речь идет о любом многоугольнике в основании) 2) вершина пирамиды проектируется в центр вписанной в основание окружности 3) все апофемы (высоты боковых граней) равны между собой и их проекции на основание равны радиусу вписанной в основание окружности. Все это легко увидеть, если заметить, что апофемы вместе с их проекциями на основание и высотой пирамиды образуют равные прямоугольные треугольники. (Они все имеют общий катет - высоту пирамиды, и равные острые углы - поскольку грани имеют равный наклон). Радиус вписанной в основание окружности r = (5 + 12 - 13)/2 = 2; Отсюда апофема равна 6 (потому что 2^2 + (4√2)^2 = 36) далее можно двумя 1) Sбок = (5 + 12 + 13)*6/2 = 90; 2) Sбок = Sосн/cos(Ф); Sосн = 5*12/2 = 30; cos(Ф) = 2/6 = 1/3; Ф - угол наклона боковой грани. И снова получается 90 :) удивительно...
Углы 1 и 2 равны, т к АК биссектриса, углы 1 и 3 равны как накрест лежащие между параллельными прямыми ВС и AD и секущей АM . Значит углы 2 и 3 равны и треугольник АВM равнобедренный.
AB = CD = 5 см.
BC = BK + KC = 13 см, BC = AD = 13 см.
P = 2 * (5+13) = 36 см.
ответ : 36 см
Вот ответ к четвертой :
Если меньшая диагональ 12 см, а один из углов 60 градусов(меньший), то эта диагональ делит ромб на 2 равносторонних треугольника со стороной 12(а треугольники равносторонние,так как изначально они равнобедреные(у ромба все стороны равны)а угол 60 градусов,значит 2 других тоже по 60 градусов,а отсюда следует,что треугольники равносторонние со стороной 12 см)стороны ромба равны значит все стороны 12 см, а периметр равен сумме длин всех сторон:P=12*4=48см
ответ: P=48 см
вот ответ к первой задаче : так как сумма двух соседних углов ромба равна 180⁰. По условию задачи два угла ромба относятся как 8:10 ,значит, если один из углов 8х, то другой 10х сумма двух соседних углов ромба равна 180⁰.составим уравнение 8х + 10х = 180 18х = 180 х =10 коэффициент ТОГДА меньший угол равен: 8х = 8*10⁰ = 80⁰ ТОГДА больший угол 10х=10*10=100° град
1) в основание можно вписать окружность (для треугольника это всегда можно сделать, но тут речь идет о любом многоугольнике в основании)
2) вершина пирамиды проектируется в центр вписанной в основание окружности
3) все апофемы (высоты боковых граней) равны между собой и их проекции на основание равны радиусу вписанной в основание окружности.
Все это легко увидеть, если заметить, что апофемы вместе с их проекциями на основание и высотой пирамиды образуют равные прямоугольные треугольники. (Они все имеют общий катет - высоту пирамиды, и равные острые углы - поскольку грани имеют равный наклон).
Радиус вписанной в основание окружности r = (5 + 12 - 13)/2 = 2;
Отсюда апофема равна 6 (потому что 2^2 + (4√2)^2 = 36)
далее можно двумя
1) Sбок = (5 + 12 + 13)*6/2 = 90;
2) Sбок = Sосн/cos(Ф); Sосн = 5*12/2 = 30; cos(Ф) = 2/6 = 1/3; Ф - угол наклона боковой грани. И снова получается 90 :) удивительно...