Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Рассмотрим один из равных треугольников, разделённых высотой.
один катет = 48 (это высота)
второй катет обозначим 7x
гипотенузу обозначим 25x (это сторона большого треугольника)
уравнение: 625x² = 2304 + 49x² - по теореме Пифагора.
Решаем:
576x² = 2304
x² = 4
x = 2
отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 2*25 = 50
катет маленького треугольника, он же 1/2 основания большого треугольника
3*7 = 21, а всё основание равно 21*2 = 42
Искомая площадь треугольника равна 42*48 / 2 = 1008 см²
Объяснение:
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.