Клумба имеет вид трапеции (по определению: две противоположные стороны параллельны, а две другие - нет - это дано в условии.
Второе: трапеция вписана в окружность, следовательно, она равнобедренная.
S = (a+b)·h/2 (формула площади). Отсюда
h = (4599·2)/(13+133) = 63 м.
В равнобедренной трапеции высота ВН из тупого угла к основанию AD делит это основание на отрезки, меньший из которых равен полуразности оснований, то есть АН = (133 - 13)/2 = 60 м.
Тогда из прямоугольного треугольника АВН по Пифагору найдем АВ.
В треугольнике ABC DN - средняя линия по определению. Значит, по свойству средней линии ND параллельна AB.Отсюда следует параллельность ND и KB,так как KB = 1/2 AB. Имеем также, что ND = 1/2*AB = 1/2*10 = 5 (см). Так как по условию задачи точка K - середина отрезка AB, то KB = 1/2*10 = 5 (см). Аналогично рассуждая,доказываем, что КD - средняя линия треугольника ABC,что KD параллельна NB, что KD = 1/2*BC = 5 (см) и что BN = 5 см. Рассмотрим четырехугольник KBND. В нём ND параллельна KB и KD параллельна BN (по ранее доказанному). Также мы имеем, что NB = KD = 5 см и что KB = DN = 5 см. Значит, по определению данный четырехугольник - параллелограмм. А следуя из того, что NB = KD = KB = DN = 5 см, то получаем, что KBND - ромб. Найдем периметр данной фигуры. P = 5*4 = 20 (см). ответ: ромб; 20 см
АВ = 87 м.
Объяснение:
Клумба имеет вид трапеции (по определению: две противоположные стороны параллельны, а две другие - нет - это дано в условии.
Второе: трапеция вписана в окружность, следовательно, она равнобедренная.
S = (a+b)·h/2 (формула площади). Отсюда
h = (4599·2)/(13+133) = 63 м.
В равнобедренной трапеции высота ВН из тупого угла к основанию AD делит это основание на отрезки, меньший из которых равен полуразности оснований, то есть АН = (133 - 13)/2 = 60 м.
Тогда из прямоугольного треугольника АВН по Пифагору найдем АВ.
АВ = √(ВН²+АН²) = √(63²+60²) = √7569 = 87 м.
Так как по условию задачи точка K - середина отрезка AB, то KB = 1/2*10 = 5 (см).
Аналогично рассуждая,доказываем, что КD - средняя линия треугольника ABC,что KD параллельна NB, что KD = 1/2*BC = 5 (см) и что BN = 5 см.
Рассмотрим четырехугольник KBND. В нём ND параллельна KB и KD параллельна BN (по ранее доказанному). Также мы имеем, что NB = KD = 5 см и что KB = DN = 5 см. Значит, по определению данный четырехугольник - параллелограмм. А следуя из того, что NB = KD = KB = DN = 5 см, то получаем, что KBND - ромб.
Найдем периметр данной фигуры.
P = 5*4 = 20 (см).
ответ: ромб; 20 см