1)Да. Точки В и С лежат в плоскости альфа, т.к. через три точки не лежащие на одной прямой можно провести плоскость и только одну, если две точки прямой (а это A,O и D,O) прянадлежат плоскости то вся прямая принадлежит плоскости. В принадлежит прямой DO, С принадлежит прямой АО. 2)Да. Т.к. если две плоскости имею одну общую точку, то они пересекаются по прямой и все общие точки лежат на этой прямой. Плоскость MOB и плоскость ромба пересекаются по прямой BO , а точка D принадлежит этой прямой, а значит и обеим плоскостям. Удачи
АС - основание. Проводим высоты АН2, СН3 и ВН1 соответственно из углов А, С и В. Высота ВН1, проведённая к основанию является медианой и биссектриссой угла В, тогда СН1 = 12/6 =2 Рассмотрим треугольник ВСН1: cos C = СН1 / ВС = 6/18 =1/3 Расмотрим треугольник АСН2: cos C = CH2 / AC, отсюда СН2 = АС*cos C = 12 * 1/3 = 4 Тогда ВН2 = 18-4 = 14 Согласно теореме: в любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному, т.е. треугольник ВН2Н3 подобен треугольнику АВС. к = ВН2/ВС = 14/18 = 7/9 Н3Н2 = 12*7/9 = 28/3 = 9
2)Да. Т.к. если две плоскости имею одну общую точку, то они пересекаются по прямой и все общие точки лежат на этой прямой. Плоскость MOB и плоскость ромба пересекаются по прямой BO , а точка D принадлежит этой прямой, а значит и обеим плоскостям.
Удачи
Высота ВН1, проведённая к основанию является медианой и биссектриссой угла В, тогда СН1 = 12/6 =2
Рассмотрим треугольник ВСН1: cos C = СН1 / ВС = 6/18 =1/3
Расмотрим треугольник АСН2: cos C = CH2 / AC, отсюда СН2 = АС*cos C = 12 * 1/3 = 4
Тогда ВН2 = 18-4 = 14
Согласно теореме: в любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному, т.е. треугольник ВН2Н3 подобен треугольнику АВС. к = ВН2/ВС = 14/18 = 7/9
Н3Н2 = 12*7/9 = 28/3 = 9