Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3
1)
поскольку a||b, то <1=<2
102:2=51°
остальные углы которые вертикальные с углами 1 и 2, также равны 51°
другие 4 угла которые смежные с ними равны 180-51=129°
2)
поскольку <1=<2, можно сделать вывод что m||n
поскольку m||n, то СВ такая же секущая как и АС, значит <3+<4=180
<4=180-120=60°
3)
(на 2 фото рисунок)
поскольку АD биссектриса, то угол DAF=72:2=36°
поскольку АВ||DF, то AD можно считать секущей
углы DAB и АDF внутренне разносторонние, то есть равны
DAB=АDF=36°
F=180-36-36=108°
4)
(на фото рисунок)
для того чтобы параллельные были прямыми, внутренне односторонние углы должны давать в сумме 180°
180-65=115°
угол КЕD=115°
Задание: 3
Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.
Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3