Дано: ΔCAB,BC=CA.
Основание треугольника на 20 см больше боковой стороны.
Периметр треугольника CAB равен 260 см. Вычисли стороны треугольника.
(В первое окошко введи число, во второе единицы измерения, в ответ нужно записать в см!)
AB=
;
BC=
;
CA=
.
Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a).
cos(a)=(36+49-64)/84=0,25
Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное.
длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41),
b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41).
Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°),
PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37).
Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3).
С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).
S(ABC)=1/2•AC•BC
S(ABC)=1/2•4•4=8
АВ-диаметр
АВ^2=АС^2+ВС^2
АВ^2=4^2+4^2
АВ^2=16+16=32
АВ=V32=4V2
R=4V2/2=2V2 -радиус
Sполуокружности=(ПR^2)/2=(П•(2V2)^2)/2=4П
S=(8+4П) площадь искомой части
Приближённое значение S=8+4•3,14=8+12,56=20,56