Треугольник АВС, АВ=ВС, О-центр окружности, ВО=20, проводим перпендикуляр из точки О на АС=медиане=биссектрисе=радиусу, длина окружности=2*пи*радиус, 24пи=2*пи*радиус, радиус=12, проводим АО и СО - биссектрисы углов А и С соответственно, центр вписанной окружности лежит на пересечении биссектрис, , т.к ВО тоже биссектриса, АО=ВО=СО=20, треугольникАОС равнобедренный, АН=СН=корень(АО в квадрате-ОН в квадрате)=корень(400-144)=16, АС=2*АН=2*16=32, треугольник АВН, ВН=ВО+ОН=20+12=32, АВ=ВС=корень(АН в квадрате+ВН в квадрате)=корень(256+1024)=16*корень5, периметр=16*корень5+16*корень5+32=32*корень5+32
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).