Дано чотирикутник ABCD, навколо якого можна описати коло. До сторін AD і CD провели серединні перпендикуляри, які перетинаються у точці Q та перетинають сторони ВС і АВ у точках Рік відповідно. Виявилось, що точки K, B, P, Q лежать на одному колі. Доведіть, що точки А. О. С лежать на одній прямій.
ответ: угол А=52°; угол В=65°
Объяснение: Для решения этой задачи найдем сначала внутренний угол С: сумма внутреннего и внешнего угла в треугольнике равна 180°. Значит внутренний угол А = 180-117=63°. Сумма углов в треугольнике равна 180° Найдем сколько градусов будут угол А и В вместе: 180-63=117°. По условию угол А относится к углу В как 4:5. Примем угол А за 4 части, а угол В за 5 частей. 4+5=9 частей составляет сумма угла А и В. Найдем сколько составляет 1 часть: нужно 117:9=13°. Находим угол А = 13х4=52°. Находим угол В = 13х5=65°
∠ВАС = ∠ВСА = 30 ° ; ∠АВС = 120° .
Объяснение:
По условию :
Δ АВС - равнобедренный , следовательно:
Боковые стороны равны ⇒ АВ=ВС = 29,4 см
Углы при основании равны :
АС - основание ⇒ ∠BAC (∠BAD) = ∠BCA (∠BCD)
BD =14,7см - высота к основанию АС ⇒ является медианой и биссектрисой :
∠BDA = ∠BDC = 90° ( т.к. BD - высота)
AD = DC = АС/2 (т. к. BD - медиана)
∠ABD = ∠CBD (т. к. BD - биссектриса)
ΔBDA = ΔBDC - прямоугольные треугольники
Решение.
1) ΔBAD
По условию катет BD = 14,7 см , гипотенуза АВ = 29,4 см , следовательно :
BD = 1/2 * AB = 1/2 * 29,4 = 14,7 см
Если катет равен половине гипотенузы, то угол лежащий против этого катета равен 30° ⇒∠DAB (∠ BAC) = 30°
Проверим по определению синуса:
sin A = 14,7/29,4 = 1/2 ⇒ ∠BAC (∠BAD ) = ∠BCA (∠BCD) = 30°
2) ΔАВС :
Сумма углов любого треугольника = 180°
∠АВС = 180° - (∠ВАС + ∠ВСА)
∠АВС = 180 - 2*30 = 120 °