Дано, что ΔACB — равнобедренный. Основание AB треугольника равно 15 боковой стороны треугольника. Периметр треугольника ACB равен 99 м. Вычисли стороны треугольника.
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:
1.Трапеция ABCD. AB=16. DC=44. AD=17. BC=25. Проведем две высоты: АМ и BN. Обозначим каждую высоту за х. Сторону NC обозначим за у. Тогда DM=44-16-y=28-y. По Пифагору: •треугольник AMD: х^2=17^2-(28-у)^2 х^2=289-784+56у-у^2 x^2=56y-y^2-495 •треугольник BCN: х^2=25^2-у^2 х^2=625-у^2 Приравниваем: 56у-у^2-495=625-у^2 56у=1120 у=20. Подстваляем в любое уравнение: х^2=625-20^2 х^2=225 х=15. ответ: высота трапеции - 15. 2. Трапеция ABCD. Угол ADC=30 градусов. AD=BC=x - боковая сторона. Проводим высоту АМ. Обозначаем еe за h. S=(AB+DC)*h/2. По свойству(если в четырехугольник вписана окружность, то сумма двух его параллельных сторон равна сумме двум другим параллельным сторонам) определяем, что AB+DC=AD+BC=2x. S=2x*h/2=x*h=32. Находим высоту: Так как она лежит напротив угла в 30 градусов, то по Пифагору она равна половине гипотенузы, т.е. h=x/2. Подставляем в формулу: S=x*x/2=32 х^2=64 х=8. ответ: боковая сторона равнобокой трапеции - 8.
1) Чтобы найти координаты вектора AС, зная координаты его начальной точки А и конечной точки С, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки. То есть:
AС = (Сx - Ax; Сy - Ay) = (5 - 1; -2 - (-2)) = (4; 0).
Таким же найдем координаты вектора ВА:
BA = (Ax - Bx; Ay - By) = (1 - 3; -2 - 6) = (-2; -8).
2) Точка М расположена на отрезке ВС и делит его пополам, следовательно, для поиска координат точки М необходимо определить координаты отрезка ВС и разделить их пополам, то есть:
М = ВС / 2 = (Сx + Bx; Сy + By) / 2 = ((Сx + Bx) / 2; (Сy + By) / 2) = ((5 + 3) / 2; (-2 + 6) / 2) = (8 / 2; 4 / 2) = (4; 2).
Для вычисления длины отрезка воспользуемся формулой вычисления расстояния между двумя точками A (xa; ya) и B (xb; yb):
AB = √(( xb - xa)^2 + (yb - ya)^2).
Подставим значения точки А (1; -2) и М (4; 2) в формулу:
AM = √((4 - 1)^2 + (2 - (-2))^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5.
ответ: координаты вектора АС (4; 0), вектора ВА (-2; -8), координаты точки М (4; 2), длина отрезка АМ = 5.
Объяснение:
Проведем две высоты: АМ и BN. Обозначим каждую высоту за х.
Сторону NC обозначим за у.
Тогда DM=44-16-y=28-y.
По Пифагору:
•треугольник AMD:
х^2=17^2-(28-у)^2
х^2=289-784+56у-у^2
x^2=56y-y^2-495
•треугольник BCN:
х^2=25^2-у^2
х^2=625-у^2
Приравниваем:
56у-у^2-495=625-у^2
56у=1120
у=20.
Подстваляем в любое уравнение:
х^2=625-20^2
х^2=225
х=15.
ответ: высота трапеции - 15.
2. Трапеция ABCD.
Угол ADC=30 градусов.
AD=BC=x - боковая сторона.
Проводим высоту АМ. Обозначаем еe за h.
S=(AB+DC)*h/2.
По свойству(если в четырехугольник вписана окружность, то сумма двух его параллельных сторон равна сумме двум другим параллельным сторонам) определяем, что AB+DC=AD+BC=2x.
S=2x*h/2=x*h=32.
Находим высоту:
Так как она лежит напротив угла в 30 градусов, то по Пифагору она равна половине гипотенузы, т.е. h=x/2.
Подставляем в формулу:
S=x*x/2=32
х^2=64
х=8.
ответ: боковая сторона равнобокой трапеции - 8.