Кордильеры Северной Америки делятся на ряд хребтов. Самый высокий хребет на севере континента - это "Аляскинский хребет", где находится гора Мак-Кинли. Далее на юго-восток в пределах Канады и США Кордильеры называются "Скалистыми горами". Западнее их находится Береговой хребет, который переходя на территорию США начинает называться "Каскадные горы". Южнее их, в западном поясе Кордильер находится горный массив Сьера-Невада, его высшая точка гора Уитни (4418 м.). Еще южнее, на территории уже Мексики, Кордильеры распадаются на две горные цепи - Западную и Восточную Сьерра-Мадре. На юге эти горные цепи пересекает поперечный вулканический хребет с такими известными вулканами как Орисава (его высота 5700 м.) и Попокатепетль (его высота 5452 м.). Как то так)
Допустим, что дан треугольник АВС - СВ = 3 см - XZ-средняя линия АВ = 4 см - УZ-средняя линия СА = 5 см- XУ-средняя линия Cредняя линия равна половине основания XZ=СВ/2=3/2=1.5см УZ= АВ/2=4/2=2см XУ=СА/2= 5/2=2.5см Средняя линия в точках пересечения со сторонам делит их пополам т.е: СУ=УВ=СВ/2=1.5см АХ=ХВ=АВ/2=2см СZ=ZA=СА/2=2.5см Как мы видим из вычислений и рисунка все 4 маленьких треугольника равны по трем сторонам (это третий признак равенства) Мы знаем все стороны маленьких треугольников, значит, по формуле Герона мы можем найти площадь:
p- полупериметр, a,b,c- стороны
Мы нашли площадь одного маленького треугольника , а он в тетраэдре является гранью. Т.к мы доказали, что маленькие треугольники равны, то площади граней тоже равны
Как то так)
СВ = 3 см - XZ-средняя линия
АВ = 4 см - УZ-средняя линия
СА = 5 см- XУ-средняя линия
Cредняя линия равна половине основания
XZ=СВ/2=3/2=1.5см
УZ= АВ/2=4/2=2см
XУ=СА/2= 5/2=2.5см
Средняя линия в точках пересечения со сторонам делит их пополам т.е:
СУ=УВ=СВ/2=1.5см
АХ=ХВ=АВ/2=2см
СZ=ZA=СА/2=2.5см
Как мы видим из вычислений и рисунка все 4 маленьких треугольника равны по трем сторонам (это третий признак равенства)
Мы знаем все стороны маленьких треугольников, значит, по формуле Герона мы можем найти площадь:
p- полупериметр, a,b,c- стороны
Мы нашли площадь одного маленького треугольника , а он в тетраэдре является гранью. Т.к мы доказали, что маленькие треугольники равны, то площади граней тоже равны