1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
Объем пирамиды равен V=1/3*S*h, где S - площадь основания, h - высота пирамиды.
Основание пирамиды - квадрат с диагональю 8см. S=а^2, где а - сторона квадрата. Диагональ квадрата равна а*(\|2)=8, 2*а^2=64, а^2=32. S=32(см^2).
Т.к. Пирамида правильная, высота пирамиды - отрезок, соединяющий вершину пирамиды с центром квадрата. Рассмотрим треугольник, образованный высотой, боклвым ребром и половиной диагонали квадрата. Это прямоугольный треугольник, гипотенуза которого 5см, катет 8/2=4(см). Высоту находим по теореме Пифагора: h=\|(25-16)=3(см).
1) если два катета одного прямоугольного треугольника равны
соответственно двум катетам другого прямоугольного треугольника, то
такие треугольники равны - первый признак равенства треугольников по двум сторонам и углу между ними
4) если две стороны одного прямоугольного треугольника равны
соответственно двум сторонам другого прямоугольного треугольника,
то такие треугольники равны - если две стороны одного прямоугольного треугольника равны соответственно двум сторонам другого прямоугольного треугольника, то и третья сторона одного треугольника равна третьей стороне другого треугольника; такие треугольники равны по трем сторонам
Основание пирамиды - квадрат с диагональю 8см. S=а^2, где а - сторона квадрата. Диагональ квадрата равна а*(\|2)=8, 2*а^2=64, а^2=32. S=32(см^2).
Т.к. Пирамида правильная, высота пирамиды - отрезок, соединяющий вершину пирамиды с центром квадрата. Рассмотрим треугольник, образованный высотой, боклвым ребром и половиной диагонали квадрата. Это прямоугольный треугольник, гипотенуза которого 5см, катет 8/2=4(см). Высоту находим по теореме Пифагора:
h=\|(25-16)=3(см).
V=1/3*32*3=32(см^2).
ответ: 32(см^2).