Войти
АнонимГеометрия06 июля 17:01
Дан ромб ABDC. Его диагональ AD равна стороне ромба. Найди угол BAC.
РЕКЛАМА
11.11 – главная распродажа года на AliExpress
КУПИТЬ
ответ или решение1
Русакова Юля
Дано:
ромб ABDC,
AD = АВ,
Найти градусную меру угла ВАС — ?
1) Рассмотрим ромб ABDC. Мы знаем, что у ромба все стороны равны между собой. Тогда АВ = ВD = DС = АС.
2) Рассмотрим треугольник АВD. Так как АВ = ВD = АD, то треугольник АВD является равносторонним. Тогда у него все углы по 60 градусов;
3) Диагональ АD является биссектрисой угла ВАС. Следовательно угол ВАС = 2 * ВАD = 2 * 60 = 120 (градусов).
ответ: 120 градусов.
ответ: Дано:
∆АВС - рівнобедрений; АС - основа; BD - бісектриса;
М є BD. АВ ‖ ME; ВС ‖ MF. Довести: DE = DF.
Доведения:
За умовою ∆АВС - рівнобедрений (АВ = ВС).
За умовою BD - бісектриса.
За властивістю piвнобедреного трикутника маємо: BD - висота.
BD ┴ АС, тобто ∟MDE = ∟MDF = 90°.
За властивістю кутів р1внобедреного трикутника маємо: ∟A = ∟C.
За умовою АВ ‖ ME; AC - січна, тоді за ознакою паралельності прямих маємо: ∟BAC = ∟MEC (відповідні).
Аналогічно: MF ‖ ВС; АС - січна, ∟BCA = ∟MFA.
Якщо ∟A = ∟C; ∟A = ∟MED; ∟C = ∟MFD, тоді ∟MEF = ∟MFE.
Тодф ∆EMF - рівнобедрений. MD - висота, тоді MD - медіана, отже DE = EF.
Доведено.
Объяснение:
Войти
АнонимГеометрия06 июля 17:01
Дан ромб ABDC. Его диагональ AD равна стороне ромба. Найди угол BAC.
РЕКЛАМА
11.11 – главная распродажа года на AliExpress
КУПИТЬ
ответ или решение1
Русакова Юля
Дано:
ромб ABDC,
AD = АВ,
Найти градусную меру угла ВАС — ?
1) Рассмотрим ромб ABDC. Мы знаем, что у ромба все стороны равны между собой. Тогда АВ = ВD = DС = АС.
2) Рассмотрим треугольник АВD. Так как АВ = ВD = АD, то треугольник АВD является равносторонним. Тогда у него все углы по 60 градусов;
3) Диагональ АD является биссектрисой угла ВАС. Следовательно угол ВАС = 2 * ВАD = 2 * 60 = 120 (градусов).
ответ: 120 градусов.
ответ: Дано:
∆АВС - рівнобедрений; АС - основа; BD - бісектриса;
М є BD. АВ ‖ ME; ВС ‖ MF. Довести: DE = DF.
Доведения:
За умовою ∆АВС - рівнобедрений (АВ = ВС).
За умовою BD - бісектриса.
За властивістю piвнобедреного трикутника маємо: BD - висота.
BD ┴ АС, тобто ∟MDE = ∟MDF = 90°.
За властивістю кутів р1внобедреного трикутника маємо: ∟A = ∟C.
За умовою АВ ‖ ME; AC - січна, тоді за ознакою паралельності прямих маємо: ∟BAC = ∟MEC (відповідні).
Аналогічно: MF ‖ ВС; АС - січна, ∟BCA = ∟MFA.
Якщо ∟A = ∟C; ∟A = ∟MED; ∟C = ∟MFD, тоді ∟MEF = ∟MFE.
Тодф ∆EMF - рівнобедрений. MD - висота, тоді MD - медіана, отже DE = EF.
Доведено.
Объяснение: