ответ:2.5.3 в прямоугольном треугольнике cosA = sinB или cosB=sinA. у нас есть Cos A 173/371. значит sinB будет 173/371
2.5.4 Синус - отношение противолежащего катета к гипотенузе. То получаем, что катет BC=4√11, а гипотенуза = 15; По т. Пифагора найдем катет AC= √225-176=7
то sinB=7/15
2.5.5 Косинус-отношение прилежащего катета на гипотенузу, косинус угла А равен √91\10, значит прилежащий катет, т.е АС=√91, а гипотенуза=10.
По теореме Пифагора находим катет ВС:
ВС²=ВА²-СА²
ВС²=100-91=9
ВС=3
Косинус-отношение прилежащего катета на гипотенузу, значит косинусом угла В будет служить отношение ВС\ВА=3\10
ответ: 0,3
2.5.6 tg A = sin A/ cos A
Применим основное тригонометрическое тождество:
sin A=√(1-cos²A)=√(1-(√2/4)²)= √(1-2/16)=√(1-1/8)=√(7/8)
Тогда tg A = √(7/8):(√2/4)= √(7/8)·4/√2=4·√(7/16)=4·¼·√7=√7.
Это задачка на теорему Менелая. Если прямая пересекает AC в точке K, то BN*CK*AM/(NC*KA*MB) = 1; Если обозначить KC = p*AC; AM = q*BA; то 2*p*q/((1-p)*(1+q)) = 1; (1) Треугольник CNK по условию имеет площадь 1/5 от площади ABC; (я считаю, что площадь BNKA в 4 раза БОЛЬШЕ площади CNK. Если наоборот, то положение точки K не может соответствовать условию - она будет вне треугольника.) По условию NC = BC/3; поэтому расстояние от N до AC составляет 1/3 расстояния от B до AC. Отсюда (площадь CNK) = p*(1/3)*(площадь ABC); или p/3 = 1/5; p = 3/5; p/(1 - p) = 3/2; если подставить это в (1) q/(1 + q) = 1/3; q = 1/2; То есть AM = BA/2;
Доказательство теоремы Менелая необыкновенно простое. Если провести какую-то прямую вне треугольника, так, чтобы она пересекалась с прямой NM в точке D где-то вне треугольника, потом провести через три вершины прямые параллельно NM, которые пересекут эту прямую в точках A2; B2; C2; (ну, в смысле AA2 II BB2 II CC2 II MN, и напомню, точка К - тоже на MN) то
это всё доказательство. С учетом "знака", то есть "направления" отрезка, пишут обычно -1; тут при составлении равенств важно не запутаться в отрезках :)))
ответ:2.5.3 в прямоугольном треугольнике cosA = sinB или cosB=sinA. у нас есть Cos A 173/371. значит sinB будет 173/371
2.5.4 Синус - отношение противолежащего катета к гипотенузе. То получаем, что катет BC=4√11, а гипотенуза = 15; По т. Пифагора найдем катет AC= √225-176=7
то sinB=7/15
2.5.5 Косинус-отношение прилежащего катета на гипотенузу, косинус угла А равен √91\10, значит прилежащий катет, т.е АС=√91, а гипотенуза=10.
По теореме Пифагора находим катет ВС:
ВС²=ВА²-СА²
ВС²=100-91=9
ВС=3
Косинус-отношение прилежащего катета на гипотенузу, значит косинусом угла В будет служить отношение ВС\ВА=3\10
ответ: 0,3
2.5.6 tg A = sin A/ cos A
Применим основное тригонометрическое тождество:
sin A=√(1-cos²A)=√(1-(√2/4)²)= √(1-2/16)=√(1-1/8)=√(7/8)
Тогда tg A = √(7/8):(√2/4)= √(7/8)·4/√2=4·√(7/16)=4·¼·√7=√7.
ответ: √7.
2.5.7 sina=3(√10)/(√10)²=3/√10
cosa=√(1-sin²x)=√(1-9/10)=√(1/10)=1/√10
tga=sina/cosa=(3/√10)/(1/√10)=(3/√10)*√10=3
BN*CK*AM/(NC*KA*MB) = 1;
Если обозначить KC = p*AC; AM = q*BA; то
2*p*q/((1-p)*(1+q)) = 1; (1)
Треугольник CNK по условию имеет площадь 1/5 от площади ABC; (я считаю, что площадь BNKA в 4 раза БОЛЬШЕ площади CNK. Если наоборот, то положение точки K не может соответствовать условию - она будет вне треугольника.)
По условию NC = BC/3; поэтому расстояние от N до AC составляет 1/3 расстояния от B до AC. Отсюда (площадь CNK) = p*(1/3)*(площадь ABC); или
p/3 = 1/5; p = 3/5; p/(1 - p) = 3/2; если подставить это в (1)
q/(1 + q) = 1/3; q = 1/2;
То есть AM = BA/2;
Доказательство теоремы Менелая необыкновенно простое. Если провести какую-то прямую вне треугольника, так, чтобы она пересекалась с прямой NM в точке D где-то вне треугольника, потом провести через три вершины прямые параллельно NM, которые пересекут эту прямую в точках A2; B2; C2; (ну, в смысле AA2 II BB2 II CC2 II MN, и напомню, точка К - тоже на MN)
то
(BN/NC)*(CK/KA)*(AM/MB) = (B2D/DC2)*(C2D/DA2)*(A2D/DB2) = 1;
это всё доказательство. С учетом "знака", то есть "направления" отрезка, пишут обычно -1; тут при составлении равенств важно не запутаться в отрезках :)))