Пусть в прямоугольной трапеции ABCD, AB и CD основания, а ∠D прямой. Тогда AD меньшая боковая сторона (как расстояние между параллельными отрезками AB и CD), то есть AD=19см. По построению DC большое основание, поэтому по условию DC=31см. Острые углы при большом основании, ∠C=45° т.к. ∠D=90°.
H∈DC, BH⊥DC ⇒ BH=AD=19см.
В прямоугольном ΔBHC:
∠C=45°, ∠H=90° ⇒ ∠B=45°⇒ HC=BH=19см.
DH=DC-HC=31-19=12см.
В четырёхугольнике ABHD:
∠D=90°, ∠H=90° и ∠A=90°, ∠B=90° т.к. AB║DH, ведь H∈DC и AB║DC.
Получается ABHD - прямоугольник, поэтому AB=HD, HD=12см ⇒ AB=12см.
Так как спортивная площадка имеет прямоугольную форму, то ее площадь определяется как площадь прямоугольника (S), то есть путем умножения длины (a) на ширину (b):
S = a х b.
Если известна площадь спортивного участка и его ширина, то можно вычислить его длину:
a = S : b;
a = 11250 : 90 = 125 м.
Р=2(а+b)=2(125+90)=2*215=430(м)
ответ: длина школьной спортивной площадки составляет 125 м, периметр площадки 430 м
Объяснение:
Площадь прямоугольника равна длина умножить на ширину (S=a*b); периметр равен две длины плюс две ширины (Р=2*а+2*b) проще говоря Р=2*(a+b); B -известно надо найти А по формуле площади, т.е. длина равна площадь делить на ширину (a=S/b); a=11250/90=125 метров; ищем периметр по формуле Р=2*(а+b)=2*(125+90)=2*215=430
Вступление:
Пусть в прямоугольной трапеции ABCD, AB и CD основания, а ∠D прямой. Тогда AD меньшая боковая сторона (как расстояние между параллельными отрезками AB и CD), то есть AD=19см. По построению DC большое основание, поэтому по условию DC=31см. Острые углы при большом основании, ∠C=45° т.к. ∠D=90°.
H∈DC, BH⊥DC ⇒ BH=AD=19см.
В прямоугольном ΔBHC:
∠C=45°, ∠H=90° ⇒ ∠B=45°⇒ HC=BH=19см.
DH=DC-HC=31-19=12см.
В четырёхугольнике ABHD:
∠D=90°, ∠H=90° и ∠A=90°, ∠B=90° т.к. AB║DH, ведь H∈DC и AB║DC.
Получается ABHD - прямоугольник, поэтому AB=HD, HD=12см ⇒ AB=12см.
AB мень. осн. т.к. CD - большее.
Меньшее основание равно 12см.
Так как спортивная площадка имеет прямоугольную форму, то ее площадь определяется как площадь прямоугольника (S), то есть путем умножения длины (a) на ширину (b):
S = a х b.
Если известна площадь спортивного участка и его ширина, то можно вычислить его длину:
a = S : b;
a = 11250 : 90 = 125 м.
Р=2(а+b)=2(125+90)=2*215=430(м)
ответ: длина школьной спортивной площадки составляет 125 м, периметр площадки 430 м
Объяснение:
Площадь прямоугольника равна длина умножить на ширину (S=a*b); периметр равен две длины плюс две ширины (Р=2*а+2*b) проще говоря Р=2*(a+b); B -известно надо найти А по формуле площади, т.е. длина равна площадь делить на ширину (a=S/b); a=11250/90=125 метров; ищем периметр по формуле Р=2*(а+b)=2*(125+90)=2*215=430