Около любого треугольника можно описать окружность.
Доказательство:
Рассмотрим произвольный треугольник ABC. Пусть точка О - пересечение серединных перпендикуляров к его сторонам. Проведём отрезки OA, OB и OC. Они равны (OA=OB=OC), так как точка О равноудалена от вершин треугольника ABC (см. свойство серединных перпендикуляров). Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника ABC. Следовательно, окружность описана около треугольника. ABC.
В треугольной пирамиде Найдём площадь боковой поверхности, как сумму площадей боковых граней. Т. к. площади двух граней одинаковы и они являются прямоугольными треугольниками, найдём их катеты: АС=а- по условию, найдём AD из прямоугольного треугольника DKA , где К- пересечение апофемы грани DBC со стороной ВС. АК=а корней из 3 делить на 2. Тогда AD=АК*tg30 градусов, AD=а корней из 3разделить на 2 и умножить на 1/ на корень из 3. Получим AD=а/2. Тогда площадь треугольника ADC будет а/2*а*1/2=а в квадрате делённое на 4, но таких площадей 2, тогда их сумма будет а квадрат разделить на 2. Найдём площадь грани DCB, для этого найдём DK=а корней из3 разделить на 2 и умножить на cos30=а корней из 3 делить на 2 и умножить на cos 30= а корней из 3 делить на 2* на корень из 3 делённое на 3=3а/4. Найдём площадь а*3а/4 и разделитьна 2. Получим 3а в квадрате разделить на 8. Найдём площадь боковой поверхности: а квадрат делить на 2+ 3а квадрат разделить на .8. 2.В основании ромб, с остым углом 60 градусов, значит высота ромба будет: а*sin60=а корней из 3 разделить на 2. Построим плоскость сечения. Это будет AD1C1B, построим угол наклона этой плоскости к основинию: Проведём два перпендикуляра к ребру АВ -это DP в основании и D1P в плоскости сечения. Найдём высоту призмы: DK*tg60=а корней из 3 на 2 умножить на корень из 3=3а/2. Найдём площадь поверхности: S ромба умножим на 2 , прибавим 3а/2*а*4=6а в квадрате. Сложим полученные величины:6а в квадрате+ площадь ромба, а она равна а квадрат корней из 3 разделить на 2. И так ответ 6а в квадрате +а в квадрате корней из 3.
Теорема:
Около любого треугольника можно описать окружность.
Доказательство:
Рассмотрим произвольный треугольник ABC. Пусть точка О - пересечение серединных перпендикуляров к его сторонам. Проведём отрезки OA, OB и OC. Они равны (OA=OB=OC), так как точка О равноудалена от вершин треугольника ABC (см. свойство серединных перпендикуляров). Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника ABC. Следовательно, окружность описана около треугольника. ABC.
2.В основании ромб, с остым углом 60 градусов, значит высота ромба будет: а*sin60=а корней из 3 разделить на 2. Построим плоскость сечения. Это будет AD1C1B, построим угол наклона этой плоскости к основинию: Проведём два перпендикуляра к ребру АВ -это DP в основании и D1P в плоскости сечения. Найдём высоту призмы: DK*tg60=а корней из 3 на 2 умножить на корень из 3=3а/2. Найдём площадь поверхности: S ромба умножим на 2 , прибавим 3а/2*а*4=6а в квадрате. Сложим полученные величины:6а в квадрате+ площадь ромба, а она равна а квадрат корней из 3 разделить на 2. И так ответ 6а в квадрате +а в квадрате корней из 3.