Дано коло з центром в точці O та діаметрами AB і CD. Визнач периметр трикутника AOD, якщо CB = 8 см, AB = 40 см. Відповідь: 1. Назви властивість радіусів кіл: Усі радіуси одного кола мають . 2. Назви трикутник, рівний трикутнику △ AOD: 3. PΔAOD= см
так як ав 40 см то ао будет 20 см бо це радіус а діаметр дорівнює два радіуси тоді од тоже 20 см так як це радіуси одного і того ж кола тогда так як со і ов радіуси одного і того ж кола то вони рівні а ао і од то же рівні тому ми можемо сказат що со=ов=оа=од тогда так як угли аод і угол сов есть рівними як вертикальні то треугольник сов равен треугольнику аод за двома сторонами та кутом між ними тоді усі сторони у них ріні тому св равно также ад тогда периметр треугольника аод равен 20+20+40
80см
Объяснение:
так як ав 40 см то ао будет 20 см бо це радіус а діаметр дорівнює два радіуси тоді од тоже 20 см так як це радіуси одного і того ж кола тогда так як со і ов радіуси одного і того ж кола то вони рівні а ао і од то же рівні тому ми можемо сказат що со=ов=оа=од тогда так як угли аод і угол сов есть рівними як вертикальні то треугольник сов равен треугольнику аод за двома сторонами та кутом між ними тоді усі сторони у них ріні тому св равно также ад тогда периметр треугольника аод равен 20+20+40
80см
МОЖЕШ ЗДЕЛАТЬ ЕГО ЛУЧШИМ ОТВЕТОМ