Дано куб ABCDA1B1C1D1, ребро якого дорівнює 4 см. Точки М і К- середини ребер АD i BB1 відповідно. На ребрі CD позначили точку Е, а на його продовженні за точку D-точку F так, що DE=1 см, а точка D- середина відрізка CF. Доведіть, що пряма KF перпендикулярна до площини MD1E
ответ: 20.
Объяснение:
Площадь параллелограмма равна произведению сторон на синус угла между ними. Найдем синус угла. В прямоугольном треугольнике тангенс определяется как отношение противолежащего катета к прилежащему. Имеем:
тангенс \alpha= дробь, числитель — a, знаменатель — b = дробь, числитель — корень из { 2}, знаменатель — 4 .
Таким образом, a=x корень из { 2}, b=4x, где x — число.
По теореме Пифагора гипотенуза этого прямоугольного треугольника равна:
c= корень из { 2x в степени 2 плюс 16x в степени 2 }=3x корень из { 2}.
.
В прямоугольном треугольнике синус определяется как отношение противолежащего катета к гипотенузе. Имеем:
синус \alpha= дробь, числитель — a, знаменатель — c = дробь, числитель — x корень из { 2}, знаменатель — 3x корень из { 2 }= дробь, числитель — 1, знаменатель — 3 .
Таким образом,
12 умножить на 5 умножить на дробь, числитель — 1, знаменатель — 3 =20.
ответ: 20.
1) 60/13
2) АD=13
3) 60√3
4) 120/13
Объяснение:
ABCD-ромб⇒АС⊥ВD, АО=0,5АС, DО=0,5ВD
АО=0,5АС=0,5·10=5
DО=0,5ВD=0,5·24=12
АС⊥ВD, по теореме Пифагора АD²=АО²+DО²=5²+12²=25+144=169⇒АD=13
2) АВ=ВС=СD=АD=13-сторона ромба
3) Площадь орт.проекции фигуры на плоскость равна произведению площади данной фигуры на косинус угла между плоскостью и данной фигурой.
Площадь ромба по готовой формуле: S=0,5AC·BD=0,5·10·24=120
Площадь орт проекции: s=S·cos((ABCD)∧α)=120·cos30°=120·√3/2=60√3
4) Через точку О - пересечение диагоналей ромба проведём перпендикуляр к стороне ВС, OM⊥BC.
Но так как ВС║AD⇒ME⊥AD, ME⊥BC⇒ME-высота ромба.
Ещё одна формула для нахождения площади ромба
S=ME·AD⇒120=ME·AD=13ME⇒ME=120/13
1) Опустим из точки М перпедикуляр МТ на плоскость α.
МТ⊥α, Е∈α⇒отрезок TE есть орт.проекция отрезка МЕ на плоскости α.
АD⊥МЕ⇒АD⊥ТЕ(теорема о трёх перпендикулярах)
Значить, ∠МЕT=(АВСD∧α)=30°
МТ⊥α, ЕТ∈α⇒МТ⊥ ЕТ⇒∠МТЕ=90°
∠МТЕ=90°,∠МЕT=30°⇒MT=0,5ME=0,5 ·120/13=60/13
Растояние между ВD и пл.α и есть отрезок МТ=60/13
Р.S. Все 4 пункта вычислены. Соответствие это выбор подходящего варианта ответа
1-В
2-А
3-Б
4-Д