В треугольнике против большей стороны лежит больший угол. Это угол А. Проведем перпендикуляр АН из этого угла на противоположную сторону ВС. Имеем два прямоугольных треугольника АВН и АСН, в которых перпендикуляр АН - общий катет. Пусть СН = Х. По Пифагору АН² = АС² - Х² и АН² = АВ² - (ВС-Х)². приравняем оба уравнения и получим: 100 - Х² = 289-441+42Х - Х², откуда 42Х=252, а Х = 6. Тогда АН = √(АС² -Х²) = √(100-36) = 8. В прямоугольном треугольнике АDH АD=15, АН=8. Тогда искомое расстояние DH (гипотенуза) по Пифагору равна √(DА²+АН²) = √(225+64) = 17.
Для вычисления полной поверхности цилиндра нужно найти его радиус. Квадраты в сечении будут равными, поскольку одна их сторана равна высоте цилиндра, т.е. 5 см. Радиус можно найти начертив основание, построить угол 120 градусов, вершина которога лежит на окружности, так как плоскости проходят через образующую, а стороны равны как стороны квадратов, провести радиусы и доказать, что полусается равносторонний треугольник. Но можно и по другому. Известно, что в окружность можно вписать правильный шестиугольник, сторона которого равна радиусу окружности, а углы 120 градусов. Проверим 6 * 120 = 720 - сумма углов такого шестиугольника. И то что это действительно шестиугольник можно проверить по формуле суммы углов многоугольника 180 * (n - 2) = 180 * (6 - 2) = 720. Значит стороны квадратов на основании являются сторонами правильного шестиугольника, вписанного в окружность и равны радиусу. S = 2 * П * R * Н = 2 * П * 5 * 5 = 50П см^2 ответ: 50П см^2Для нахождения радиуса выбирай любой из предложенных Просто без чертежа сложно объяснять.
Тогда АН = √(АС² -Х²) = √(100-36) = 8.
В прямоугольном треугольнике АDH АD=15, АН=8. Тогда искомое расстояние DH (гипотенуза) по Пифагору равна √(DА²+АН²) = √(225+64) = 17.
Квадраты в сечении будут равными, поскольку одна их сторана равна высоте цилиндра, т.е. 5 см.
Радиус можно найти начертив основание, построить угол 120 градусов, вершина которога лежит на окружности, так как плоскости проходят через образующую, а стороны равны как стороны квадратов, провести радиусы и доказать, что полусается равносторонний треугольник. Но можно и по другому.
Известно, что в окружность можно вписать правильный шестиугольник, сторона которого равна радиусу окружности, а углы 120 градусов.
Проверим 6 * 120 = 720 - сумма углов такого шестиугольника.
И то что это действительно шестиугольник можно проверить по формуле суммы углов многоугольника 180 * (n - 2) = 180 * (6 - 2) = 720.
Значит стороны квадратов на основании являются сторонами правильного шестиугольника, вписанного в окружность и равны радиусу.
S = 2 * П * R * Н = 2 * П * 5 * 5 = 50П см^2
ответ: 50П см^2Для нахождения радиуса выбирай любой из предложенных Просто без чертежа сложно объяснять.