Sокр = πr² = π· а²Sin²α/(4·(1+Sin(α/2))²).
Объяснение:
Треугольник АВС - равнобедренный =>
ВН - высота, биссектриса и медиана. =>
AH = a·Sin(α/2) => AC = 2·a·Sin(α/2).
Формула радиуса вписанной в треугольник окружности:
r = S/p.
Формула площади данного нам треугольника:
S = (1/2)·a²·Sinα.
Полупериметр треугольника АВС:
p = (2a+2·a·Sin(α/2))/2 = а(1+Sin(α/2)).
r = ((1/2)·a²·Sinα)/(а(1+Sin(α/2))) = a·Sinα/(2·(1+Sin(α/2))).
r² = а²Sin²α/(2·(1+Sin(α/2)))².
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4
Sокр = πr² = π· а²Sin²α/(4·(1+Sin(α/2))²).
Объяснение:
Треугольник АВС - равнобедренный =>
ВН - высота, биссектриса и медиана. =>
AH = a·Sin(α/2) => AC = 2·a·Sin(α/2).
Формула радиуса вписанной в треугольник окружности:
r = S/p.
Формула площади данного нам треугольника:
S = (1/2)·a²·Sinα.
Полупериметр треугольника АВС:
p = (2a+2·a·Sin(α/2))/2 = а(1+Sin(α/2)).
r = ((1/2)·a²·Sinα)/(а(1+Sin(α/2))) = a·Sinα/(2·(1+Sin(α/2))).
r² = а²Sin²α/(2·(1+Sin(α/2)))².
Sокр = πr² = π· а²Sin²α/(4·(1+Sin(α/2))²).