Позначемо вершини трикутника АВС, а вершини трикутника створеного середніми лініями А₁В₁С₁. Вершини ∆А₁В₁С₁ лежать на серединах сторін ∆АВС, тому вони ділять сторони ∆АВС навпіл. А також середня лінія трикутника паралельна протилежній стороні і дорівнює її половині, тому: АС₁=ВС₁=А₁В₁; АВ₁=СВ₁=А₁С₁; ВА₁=А₁С=В₁С₁, тому ∆А₁В₁С₁~∆АВС. Якщо середні лінії ∆А₁В₁С₁ відносяться як 4 : 5 : 6, то сторони ∆АВС будуть мати таке ж саме відношення. Позначемо ці відношення як 4х, 5х та 6х, і якщо відомо, що периметр трикутника 60см, складемо рівняння:
Составить уравнение прямой , проходящей через точки А(2,-10) ,О(0;0).
Уравнение прямой проходящей через начало координат О(0;0) имеет вид у= к*х.
Тк А принадлежит данной прямой , то ее координаты удовлетворяют уравнению прямой -10=к*2 ⇒ к=-5. Уравнение прямой у=-5х
Общее уравнение прямой проходящей имеет вид у= к*х+b.
Тк O принадлежит данной прямой , то ее координаты удовлетворяют уравнению прямой 0==к*0+b ⇒b=0
Тк А принадлежит данной прямой , то ее координаты удовлетворяют уравнению прямой -10=к*2+0 ⇒ к=-5.
Уравнение прямой у=-5х
Перша сторона АС=16см
Друга сторона АВ=20см
Третя сторона ВС=24см
Объяснение:
Позначемо вершини трикутника АВС, а вершини трикутника створеного середніми лініями А₁В₁С₁. Вершини ∆А₁В₁С₁ лежать на серединах сторін ∆АВС, тому вони ділять сторони ∆АВС навпіл. А також середня лінія трикутника паралельна протилежній стороні і дорівнює її половині, тому: АС₁=ВС₁=А₁В₁; АВ₁=СВ₁=А₁С₁; ВА₁=А₁С=В₁С₁, тому ∆А₁В₁С₁~∆АВС. Якщо середні лінії ∆А₁В₁С₁ відносяться як 4 : 5 : 6, то сторони ∆АВС будуть мати таке ж саме відношення. Позначемо ці відношення як 4х, 5х та 6х, і якщо відомо, що периметр трикутника 60см, складемо рівняння:
4х+5х+6х=60
15х=60
х=60÷15
х=4
Тоді перша сторона АС=4×4=16см
Друга сторона АВ=5×4=20см
Третя сторона ВС=6×4=24см