Теорема. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. •Док-во. Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса. Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников:AD-общая;углы 1 и 2 равны т.к. AD-биссектриса;AB=AC,т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.
В равнобедренном треугольнике углы при основании равны, значит <C=<A=30°. Угол при вершине равен 180° - 2*30° =120°.
Cos120 = Cos(180-60) = -Cos60 = -1/2.
По теореме косинусов: ВС= √(АВ²+АС²-2*АВ*АС*Сos120) =
√(128+128*1/2) = √(128+128*1/2) =√192 = 8√3.
DE=4√3, так как DE - средняя линия треугольника АВС (дано).
Скалярное произведение векторов "a" и "b": |a|*|b|*Cos(a^b).
В нашем случае Cos(AB^AC)=Cos120)= -1/2, Cos(AB^BC)=Cos30=1/2, Cos(BC*DE) = Cos0 =1. Тогда:
а) (АВ*АС) = 8*8*(-1/2) = -32.
б) (АВ*ВС) = 8*8√3*(√3/2) = 96.
в) (ВС*DE) = 8√3*4√3*(1) = 96.