Два угла треугольника равны 40° и 52°. Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов.
- - -
ΔАВС.
∠А = 40°.
∠В = 52°.
ВН₁ и АН₂ - высоты.
Точка О - ортоцентр (точка пересечения высот).
∠АОВ = ? (или ∠Н₁ОН₂, не важно, так как они равны как вертикальные).
Немного о расположении ортоцентра О :
Для начала найдём ∠С.
По теореме о сумме углов треугольника -
∠А + ∠В + ∠С = 180°
∠С = 180° - ∠А - ∠В
∠С = 180° - 40° - 52°
∠С = 88°.
Так как все углы ΔАВС - острые, то ортоцентр О лежит внутри ΔАВС.
Рассмотрим ΔСВН₁ - прямоугольный (так как ∠ВН₁С = 90° по определению высоты треугольника).
Тогда -
∠Н₁СВ + ∠Н₁ВС = 90°
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - 88°
∠Н₁ВС = 2°.
Теперь рассмотрим ΔОВН₂ - прямоугольный (так как ∠ОН₂В = 90°).
По выше сказанному -
∠ВОН₂ + ∠ОВН₂ = 90°
∠ВОН₂ = 90° - ∠ОВН₂
∠ВОН₂ = 90° - 2°
∠ВОН₂ = 88°.
∠ВОН₂ и ∠АОВ - смежные.
Следовательно -
∠ВОН₂ + ∠АОВ = 180°
∠АОВ = 180° - ∠ВОН₂
∠АОВ = 180° - 88°
∠АОВ = 92°.
92°.
Площадь полной поверхности конуса равна 200π см, а его образующая - 17 см. Найдите объём конуса.
Полная поверхность конуса состоит из площади боковой поверхности и площади основания.
S = Sб + S₀ = πRL + πR² , где R - радиус основания, L - образующая
200π = πR · 17 + πR² | : π
R² + 17R - 200 = 0
D = 17² + 4 · 200 = 1089 = 33²
R₁ = (-17 + 33) : 2 = 8 см
R₂ = (-17 - 33) : 2 = -25 - не подходит по условию
Высота h, радиус основания R и образующая конуса L - это прямоугольный треугольник. Теорема Пифагора
h² = L² - R² = 17² - 8² = (17 - 8)(17 + 8) = 9·25
h = √(9·25) = 3·5 = 15 см
Объём конуса
см³
ответ: 320π см³
Два угла треугольника равны 40° и 52°. Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов.
- - -
Дано :ΔАВС.
∠А = 40°.
∠В = 52°.
ВН₁ и АН₂ - высоты.
Точка О - ортоцентр (точка пересечения высот).
Найти :∠АОВ = ? (или ∠Н₁ОН₂, не важно, так как они равны как вертикальные).
Решение :Немного о расположении ортоцентра О :
Для начала найдём ∠С.
По теореме о сумме углов треугольника -
∠А + ∠В + ∠С = 180°
∠С = 180° - ∠А - ∠В
∠С = 180° - 40° - 52°
∠С = 88°.
Так как все углы ΔАВС - острые, то ортоцентр О лежит внутри ΔАВС.
- - -
Рассмотрим ΔСВН₁ - прямоугольный (так как ∠ВН₁С = 90° по определению высоты треугольника).
Сумма острых углов прямоугольного треугольника равна 90°.Тогда -
∠Н₁СВ + ∠Н₁ВС = 90°
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - ∠Н₁СВ
∠Н₁ВС = 90° - 88°
∠Н₁ВС = 2°.
Теперь рассмотрим ΔОВН₂ - прямоугольный (так как ∠ОН₂В = 90°).
По выше сказанному -
∠ВОН₂ + ∠ОВН₂ = 90°
∠ВОН₂ = 90° - ∠ОВН₂
∠ВОН₂ = 90° - 2°
∠ВОН₂ = 88°.
- - -
∠ВОН₂ и ∠АОВ - смежные.
Сумма смежных углов равна 180°.Следовательно -
∠ВОН₂ + ∠АОВ = 180°
∠АОВ = 180° - ∠ВОН₂
∠АОВ = 180° - 88°
∠АОВ = 92°.
ответ :92°.
Площадь полной поверхности конуса равна 200π см, а его образующая - 17 см. Найдите объём конуса.
Полная поверхность конуса состоит из площади боковой поверхности и площади основания.
S = Sб + S₀ = πRL + πR² , где R - радиус основания, L - образующая
200π = πR · 17 + πR² | : π
R² + 17R - 200 = 0
D = 17² + 4 · 200 = 1089 = 33²
R₁ = (-17 + 33) : 2 = 8 см
R₂ = (-17 - 33) : 2 = -25 - не подходит по условию
Высота h, радиус основания R и образующая конуса L - это прямоугольный треугольник. Теорема Пифагора
h² = L² - R² = 17² - 8² = (17 - 8)(17 + 8) = 9·25
h = √(9·25) = 3·5 = 15 см
Объём конуса
см³
ответ: 320π см³