Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Уравнение касательной в точке (x1, y1) к эллипсу (x/a)^2 + (y/b)^2 = 1; x*x1/a^2 + y*y1/b^2 = 1; Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение. Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1; x*x2/c^2 + y*y2/d^2 = 1; Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2; если переписать уравнения эллипсов так a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1; c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1; и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2; то получается просто линейная система 2х2; a^2*u + b^2*v = 1; c^2*u + b^2*v = 1; У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1; Вот вся теория. Как это выглядит для этой задачки. a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9; 6*u + v = 1; 4*u + 9*v = 1; u = 4/25; √u = 2/5; v = 1/25; √v = 1/5; +-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб). Решение не получилось бы, если бы эллипсы не пересекались.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
x*x1/a^2 + y*y1/b^2 = 1;
Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение.
Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1;
x*x2/c^2 + y*y2/d^2 = 1;
Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2;
если переписать уравнения эллипсов так
a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1;
c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1;
и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2;
то получается просто линейная система 2х2;
a^2*u + b^2*v = 1;
c^2*u + b^2*v = 1;
У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1;
Вот вся теория. Как это выглядит для этой задачки.
a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9;
6*u + v = 1;
4*u + 9*v = 1;
u = 4/25; √u = 2/5; v = 1/25; √v = 1/5;
+-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб).
Решение не получилось бы, если бы эллипсы не пересекались.