Дано: равносторонний треугольник АВС, R = 10 см Найти: P - ? Решение: 1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 10:2 = 5 см. 2. Если сложить два радиуса, то мы получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 5 + 10 = 15. Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой) По теореме Пифагора находим Х: 4х² - х² = 225 3х² = 225 х² = 75 х = 5√3 и х = -5√3, но этот корень не подходит по усл., а значит он посторонний 3. 5√3 - половина стороны, значит вся сторона = 10√3 Р = 3 * 10√3 = 30√3 ответ: 30√3.
Найти: P - ?
Решение:
1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 10:2 = 5 см.
2. Если сложить два радиуса, то мы получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 5 + 10 = 15.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 225
3х² = 225
х² = 75
х = 5√3 и х = -5√3, но этот корень не подходит по усл., а значит он посторонний
3. 5√3 - половина стороны, значит вся сторона = 10√3
Р = 3 * 10√3 = 30√3
ответ: 30√3.
1) докажем, что стороны равны.
AB^2 = (4-(-1))^2 + (6-5)^2 = 26
AB = sqrt (26)
BC^2 = (3-4)^2 + (1-6)^2 = 26
BC = sqrt(26)
CD^2 = (-2-3)^2 + (0-1)^2 = 26
CD = sqrt (26)
DA^2 = (-1-(-2))^2 + (5-0)^2 = 26
DA = sqrt(26)
AB = BC = CD = DA = sqrt (26)
Отлично, теперь докажем, что диагонали делятся пополам точкой пересечения.
2) найдем середины диагоналей (или их точку пересечения):
Xac = (Xa + Xc)/2 = (-1+3)/2 = 1
Yac = (Ya + Yc)/2 = (5+1)/2 = 3
Xbd = (Xb + Xd)/2 = (4-2)/2 = 1
Ybd = (Yb + Yd)/2 = (6+0)/2 = 3
Итак, точка пересечения диагоналей общая, стороны равны. Четырехугольник - ромб.