Расстояние от точки О до плоскости DCB - это перпендикуляр ОН, опущенный из этой точки на плоскость.
Проведем перпендикуляр ОР из точки О к прямой ВС.
По теореме о трех перпендикулярах DР перпендикулярна ВС.
Тогда в прямоугольном треугольнике OРD (DO перпендикулярна плоскости основания конуса - дано) высота ОН из прямого угла и есть искомое расстояние.
Рассмотрим треугольник АВС. Это прямоугольный треугольник (угол В опирается на диаметр => равен 90°). ОР - средняя линия этого треугольника (точка О - середина гипотенузы АС - центр основания конуса, ОР параллельна АВ). =>
Свойства: "Радикальная ось перпендикулярна линии центров, что следует из симметричности обеих окружностей относительно линии центров.
Если P — точка на радикальной оси, то длины касательных из точки P к обеим окружностям равны — это следует из того, что степень точки равна квадрату длины отрезка касательной".
Исходя из этих свойств имеем:
В прямоугольных треугольниках ОРК и JРК по Пифагору:
ОР² = х² + РК². (1)
JР² =(10- х)² + РК². (2)
В прямоугольных треугольниках ОРМ и JPN по Пифагору:
Искомое расстояние равно 2,4 ед.
Объяснение:
Расстояние от точки О до плоскости DCB - это перпендикуляр ОН, опущенный из этой точки на плоскость.
Проведем перпендикуляр ОР из точки О к прямой ВС.
По теореме о трех перпендикулярах DР перпендикулярна ВС.
Тогда в прямоугольном треугольнике OРD (DO перпендикулярна плоскости основания конуса - дано) высота ОН из прямого угла и есть искомое расстояние.
Рассмотрим треугольник АВС. Это прямоугольный треугольник (угол В опирается на диаметр => равен 90°). ОР - средняя линия этого треугольника (точка О - середина гипотенузы АС - центр основания конуса, ОР параллельна АВ). =>
OH = AB/2 = 4 ед. РС = ВС/2 =5 ед.
В прямоугольном треугольнике DРС по Пифагору
DP = √(DC²+PС²) = √25 = 5 ед.
В прямоугольном треугольнике ОDР по Пифагору
DО = √(DР²-PО²) = √9 = 3 ед.
Тогда ОН = OP*OD/DP = 4*3/5 = 2,4 ед.
4,85 ед.
Объяснение:
Свойства: "Радикальная ось перпендикулярна линии центров, что следует из симметричности обеих окружностей относительно линии центров.
Если P — точка на радикальной оси, то длины касательных из точки P к обеим окружностям равны — это следует из того, что степень точки равна квадрату длины отрезка касательной".
Исходя из этих свойств имеем:
В прямоугольных треугольниках ОРК и JРК по Пифагору:
ОР² = х² + РК². (1)
JР² =(10- х)² + РК². (2)
В прямоугольных треугольниках ОРМ и JPN по Пифагору:
ОР²- 1² = JP² - 2² (касательные равны).
Подставим сюда значения (1) и (2):
х² + РК² - 1 = (10-х)²+ РК² - 4. => 20x =100-3.
х = 4,85 ед.